Advertisement

Food Biophysics

, Volume 14, Issue 1, pp 22–29 | Cite as

Mechanical, Optical, Thermal, and Barrier Properties of Poly (Lactic Acid)/Curcumin Composite Films Prepared Using Twin-Screw Extruder

  • T Ranjeth Kumar Reddy
  • Hyun-Joong KimEmail author
ORIGINAL ARTICLE
  • 104 Downloads

Abstract

In this present work, we synthesized poly (lactic acid) (PLA)/curcumin composite films using a twin-screw extruder and evaluated their mechanical, optical, thermal, and barrier properties. The composite films were characterized using Fourier transform infrared spectroscopy (FTIR), Universal testing machine (UTM), thermogravimetric analysis (TGA), ultraviolet-visible spectrometry (UV-visible), colorimetry, goniometry, and oxygen permeation analysis. The results confirmed that, the composite films exhibited better ultraviolet radiation-blocking properties and hydrophobicities than did the reference PLA film. The oxygen and water vapor permeabilities of the composite films were also lower than those of the reference PLA film.

Keywords

Curcumin Poly (lactic acid) Twin-screw extruder Barrier properties 

Notes

Compliance with Ethical Standards

Conflict of Interest

Ranjeth Kumar Reddy T declares that he has no conflict of interest. Hyun-Joong Kim declares that he has no conflict of interest.

References

  1. 1.
    J.-W. Rhim, H.-M. Park, C.-S. Ha, ProgPolymSci 38(10), 1629–1652 (2013)Google Scholar
  2. 2.
    M. Llana-Ruiz-Cabello, S. Pichardo, A. Baños, C. Núñez, J.M. Bermúdez, E. Guillamón, S. Aucejo, A.M. Cameán, LWT-Food SciTechnol 64(2), 1354–1361 (2015)CrossRefGoogle Scholar
  3. 3.
    J.-W. Rhim, S.-I. Hong, C.-S. Ha, LWT--Food SciTechnol 42(2), 612–617 (2009)CrossRefGoogle Scholar
  4. 4.
    L. Cabedo, J. Luis Feijoo, M. Pilar Villanueva, J.M. Lagarón, E. Giménez, MacromolSymp 233(1), 191–197 (2006)Google Scholar
  5. 5.
    C.J. Weber, V. Haugaard, R. Festersen, G. Bertelsen, Food Addit Contam 19(S1), 172–177 (2002)CrossRefGoogle Scholar
  6. 6.
    Z.Ö. Erdohan, B. Çam, K.N. Turhan, J Food Eng 119(2), 308–315 (2013)CrossRefGoogle Scholar
  7. 7.
    Y.-n. Wang, Y.-x. Weng, Lei Wang. Polym. Test. 36, 119–125 (2014)CrossRefGoogle Scholar
  8. 8.
    J.-W. Rhim, Food Res Int 51(2), 714–722 (2013)CrossRefGoogle Scholar
  9. 9.
    M. Ramos, A. Jiménez, M. Peltzer, C. María, Garrigós. Food Chem 162, 149–155 (2014)CrossRefGoogle Scholar
  10. 10.
    N. Luo, K. Varaprasad, G.V.S. Reddy, A.V. Rajulu, J. Zhang, RSC Adv. 2(22), 8483–8488 (2012)CrossRefGoogle Scholar
  11. 11.
    O. Naksuriya, S. Okonogi, R.M. Schiffelers, W.E. Hennink, Biomaterials 35(10), 3365–3383 (2014)CrossRefGoogle Scholar
  12. 12.
    M. Sampath, R. Lakra, PurnaSai Korrapati, and Balasubramanian Sengottuvelan. Colloids Surf B 117, 128–134 (2014)CrossRefGoogle Scholar
  13. 13.
    G. Yakub, A. Toncheva, N. Manolova, I. Rashkov, V. Kussovski, D. Danchev, J. Bioact. Compat. Polym. 29(6), 607–627 (2014)CrossRefGoogle Scholar
  14. 14.
    T.T.T. Nguyen, C. Ghosh, S.-G. Hwang, L.D. Tran, J.S. Park, J Mater Sci 48(7), 125–133 (2103)Google Scholar
  15. 15.
    B. Dhurai, N. Saraswathy, R. Maheswaran, P. Sethupathi, P. Vanitha, S. Vigneshwaran, V. Rameshbabu, Front. Mater. Sci. 7(4), 350–361 (2013)CrossRefGoogle Scholar
  16. 16.
    Y. Chen, J. Lin, Y. Fei, H. Wang, W. Gao, Fibers Polym 11(8), 1128–1131 (2010)CrossRefGoogle Scholar
  17. 17.
    H.-J. Kwon, J. Sunthornvarabhas, J.-W. Park, J.-H. Lee, H.-J. Kim, K. Piyachomkwan, K. Sriroth, D. Cho, Compos Part B Eng 56, 232–237 (2014)CrossRefGoogle Scholar
  18. 18.
    A. González, C.I. Alvarez Igarzabal, Food Hydrocoll. 33(2), 289–296 (2013)CrossRefGoogle Scholar
  19. 19.
    Hiserod, Richard D., Chi-Tang Ho, and Robert T. Rosen. In Species Ed. by Sara J. Risch, Chi-Tang Ho, (ACS Publications, Washington, 1997), p. 97Google Scholar
  20. 20.
    S. Shojaee-Aliabadi, M.A. Mohammadifar, H. Hosseini, A. Mohammadi, M. Ghasemlou, S.M. Hosseini, M. Haghshenas, R. Khaksar, Int J BiolMacromol 69, 282–289 (2014)CrossRefGoogle Scholar
  21. 21.
    T.T.T. Mai, T.T.T. Nguyen, Q.D. Le, T.N. Nguyen, T.C. Ba, H.B. Nguyen, T.B.H. Phan, X.P. Nguyen, J.S. Park, Adv NatSci :NanosciNanotechnol 3(2), 025014 (2012)Google Scholar
  22. 22.
    M.P. Arrieta, J. López, S. Ferrándiz, A. Mercedes, Peltzer. Polym Test 32(4), 760–768 (2013)CrossRefGoogle Scholar
  23. 23.
    M. Ramos, E. Fortunati, M. Peltzer, F. Dominici, A. Jiménez, M. del Carmen Garrigós, J.M. Kenny, Polym. Degrad. Stab. 108, 158–165 (2014)CrossRefGoogle Scholar
  24. 24.
    R. Jagannathan, P. Mary, P.P. Abraham, J Phys Chem B 116(50), 14533–14540 (2012)CrossRefGoogle Scholar
  25. 25.
    M. Żenkiewicz, J. Richert, Polym. Test. 27(7), 835–840 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Adhesion & Bio-Composites, Program in Environmental Materials Science, College of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
  2. 2.Department of PhysicsPresidency UniversityBangaloreIndia

Personalised recommendations