Food Biophysics

, Volume 14, Issue 1, pp 1–12 | Cite as

A DFT Study on the Radical-Scavenging Properties of Ferruginol-Type Diterpenes

  • Agnieszka StobieckaEmail author


Ferruginol-type diterpenes have been identified in extracts from numerous plant species. These secondary metabolites are characterized by the multifaceted bioactivity and beneficial impact on the human health. Unfortunately, the antioxidant properties and function of these foods components is not well recognized so far. Therefore, in the current study the theoretical calculations based on the Density Functional Theory (DFT) method were undertaken to investigate in details the radical-scavenging mechanism of ferruginol (1) and its derivatives such as hinokiol (2) and sugiol (3) for the first time. According to these results the direct hydrogen atom transfer (HAT) and sequential proton loss electron transfer (SPLET) mechanism was exhibited by the ferruginol-type abietanes in the non-polar media and polar solvents, respectively. Ferruginol (1) and hinokiol (2) were found to be the most promising free radical scavengers with activity comparable to that of butylated hydroxytoluene (BHT), a synthetic antioxidant commonly used in the food industry.


Ferruginol Hinokiol Sugiol DFT method Radical-scavenging activity Structure–activity relationships 



Wiesław Majzner (Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland) is gratefully acknowledged for help in handling the crystallographic data base. I also thank Reviewers for valuable suggestions and comments on the manuscript.

Funding sources

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with Ethical Standards

Conflict of Interest

Author declares no conflicts of interest.

Supplementary material

11483_2018_9550_MOESM1_ESM.docx (120 kb)
ESM 1 (DOCX 119 kb)


  1. 1.
    J.R. Hanson, Diterpenoids. Nat. Prod. Rep. 26, 1156–1171 (2009) and references thereinGoogle Scholar
  2. 2.
    J.R. Hanson, Diterpenoids of terrestrial origin. Nat. Prod. Rep. 30, 1346–1356 (2013) and references thereinGoogle Scholar
  3. 3.
    M.A. González, Synthetic derivatives of aromatic abietane diterpenoids and their biological activities. Eur. J. Med. Chem. 87, 834–842 (2014) and references thereinGoogle Scholar
  4. 4.
    M.A. González, Aromatic abietane diterpenoids: Their biological activity and synthesis. Nat. Prod. Rep. 32, 684–704 (2015) and references thereinGoogle Scholar
  5. 5.
    S.Y. Wang, J.H. Wu, L.F. Shyur, Y.H. Kuo, S.T. Chang, Antioxidant activity of Abietane-type Diterpenes from heartwood of Taiwania cryptomerioides Hayata. Holzforschung 56, 487–492 (2002)Google Scholar
  6. 6.
    C. Areche, J. Rodriguez, I. Razmilic, T. Yañez, C. Theoduloz, G. Schmeda-Hirschmann, Gastroprotective and cytotoxic effect of semisynthetic ferruginol derivatives. J. Pharm. Pharmacol. 59(2), 289–300 (2007)CrossRefGoogle Scholar
  7. 7.
    C. Areche, C. Theoduloz, T. Yáñez, A.R. Souza-Brito, V. Barbastefano, D. de Paula, A.L. Ferreira, G. Schmeda-Hirschmann, J.A. Rodríguez, Gastroprotective activity of ferruginol in mice and rat: Effects on gastric secretion, endogenous prostaglandins and non-protein sulfhydryls. J. Pharm. Pharmacol. 60(2), 245–251 (2008)CrossRefGoogle Scholar
  8. 8.
    Y.C. Chen, Y.C. Li, B.J. You, W.T. Chang, L.K. Chao, L.C. Lo, S.Y. Wang, G.J. Huang, Y.H. Kuo, Diterpenoids with anti-inflammatory activity from the wood of Cunninghamia konishii. Molecules 18(1), 682–689 (2013)CrossRefGoogle Scholar
  9. 9.
    J.A. Rodríguez, C. Theoduloz, T. Yáñez, J. Becerra, G. Schmeda-Hirschmann, Gastroprotective and ulcer healing effect of ferruginol in mice and rats: Assessment of its mechanism of action using in vitro models. Life Sci. 78(21), 2503–2509 (2006)CrossRefGoogle Scholar
  10. 10.
    G. Topcu, U. Kolak, M. Ozturk, M. Boga, S.D. Hatipoglu, F. Bahadori, B. Culhaoglu, T. Dirmenci, Investigation of anticholinesterase activity of a series of Salvia extracts and the constituents of Salvia staminea. Nat. Prod. J. 3(1), 3–9 (2013)Google Scholar
  11. 11.
    M. Ono, M. Yamoto, C. Masuoka, Y. Ito, M. Yamashita, T. Nohara, Diterpenes from the fruits of Vitex rotundifolia. J. Nat. Prod. 62(11), 1532–1537 (1999)CrossRefGoogle Scholar
  12. 12.
    H. Saijo, H. Kofujita, K. Takahashi, T. Ashitani, Antioxidant activity and mechanism of the abietane-type diterpene ferruginol. Nat. Prod. Res. 29(18), 1739–1743 (2015)CrossRefGoogle Scholar
  13. 13.
    M. Leopoldini, T. Marino, N. Russo, M. Toscano, Antioxidant properties of phenolic compounds: H-atom versus electron transfer. J. Phys. Chem. A 108(22), 4916–4922 (2004)CrossRefGoogle Scholar
  14. 14.
    M. Leopoldini, N. Russo, M. Toscano, The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 125(2), 288–306 (2011)CrossRefGoogle Scholar
  15. 15.
    J.S. Wright, E.R. Johnson, G.A. DiLabio, Predicting the activity of phenolic antioxidants: Theoretical method, analysis of substituent effects, and application to major families of antioxidants. J. Am. Chem. Soc. 123(6), 1173–1183 (2001)CrossRefGoogle Scholar
  16. 16.
    M.C. Foti, C. Daquino, C. Geraci, Electron-transfer reaction of cinnamic acids and their methyl esters with the DPPH radical in alcoholic solutions. J. Org. Chem. 69(7), 2309–2314 (2004)CrossRefGoogle Scholar
  17. 17.
    G. Litwinienko, K.U. Ingold, Solvent effects on the rates and mechanisms of reaction of phenols with free radicals. Acc. Chem. Res. 40(3), 222–230 (2007)CrossRefGoogle Scholar
  18. 18.
    T. Wang, F. Tang, Y.H. Zhang, Z. Chen, A natural diterpenoid kamebacetal a with anti-tumor activity: Theoretical and experimental study. J. Mol. Struct. 975(1-3), 317–322 (2010)CrossRefGoogle Scholar
  19. 19.
    T. Wang, Y.F. Wuc, L. Ding, Z. Chen, A combined experimental and theoretical study on weisiensin B with cytotoxicity. J. Mol. Struct. 994(1-3), 137–143 (2011)CrossRefGoogle Scholar
  20. 20.
    M.L. Zhao, J.J. Yin, Y. Xue, Y. Guo, QSAR study for cytotoxicity of diterpenoid tanshinones. Comput. Life Sci. 3, 121–127 (2011)Google Scholar
  21. 21.
    T. Wang, Y.F. Wu, X.L. Wang, Molecular structure and vibrational bands and 13C chemical shift assignments of both enmein-type diterpenoids by DFT study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 117, 449–458 (2014)CrossRefGoogle Scholar
  22. 22.
    G.M. Williams, M.J. Iatropoulos, J. Whysner, Safety assessment of Butylated Hydroxyanisole and Butylated Hydroxytoluene as antioxidant food additives. Food Chem. Toxicol. 37(9-10), 1027–1038 (1999)CrossRefGoogle Scholar
  23. 23.
    B.L. Li, G.H. Tian, Z.G. Zhang, B. Liang, E. Wang, Crystal structure of hinokiol isolated from Isodan Henryi. Khimiya Prirodnykh Soedinenii. (Russ) (Chem. Nat. Compd.) 3, 229–230 (2007)Google Scholar
  24. 24.
    N. Rajouani, M.Y.A. Itto, A. Benharref, A. Auhmani, J.C. Daran, 6-Hydroxy-7-isopropyl-1,1,4a-trimethyl-2,3,4,4a,10-10a-hexahydro-phenanthren-9(1H)-one. Acta Crystallogr. E 64(4), o762 (2008)CrossRefGoogle Scholar
  25. 25.
    Joint FAO/WHO Expert Committee on Food Additives (JEFCA) & World Health Organization (WHO) (2003). Summary of evaluations performed by the Joint FAO/WHO Expert Committee on FoodGoogle Scholar
  26. 26.
    S.N. Barlow, In Food Antioxidants, Ed B. J. F. Hudson (Elsevier, Amsterdam, 1990), p. 253CrossRefGoogle Scholar
  27. 27.
    M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart, Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107, 3902–3909 (1985)CrossRefGoogle Scholar
  28. 28.
    HyperChem, Computational Chemistry, Practical Guide, Theory and Methods, (HyperCube Inc., Canada, 1994)Google Scholar
  29. 29.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.02 (Gaussian, Inc., Wallingford CT, 2009)Google Scholar
  30. 30.
    J. Tomasi, B. Mennucci, E. Cancès, The IEF version of the PCM solvation method: An overview of a new method addressed to study molecular solutes at the QM ab initio level. J. Mol. Struct. (Theochem) 464(1-3), 211–226 (1999)CrossRefGoogle Scholar
  31. 31.
    T. Koopmans, Ordering of wave functions and eigenvalues to the individual electrons of an atom. Physica 1, 104–113 (1933)CrossRefGoogle Scholar
  32. 32.
    R.G. Parr, L.v. Szentpály, S. Liu, Electrophilicity index. J. Am. Chem. Soc. 121(9), 1922–1924 (1999)Google Scholar
  33. 33.
    G.A. DiLabbio, D.A. Pratt, J.S. Wright, Theoretical calculation of gas-phase ionization potentials for mono- and polysubstituted benzenes. Chem. Phys. Lett. 311(3-4), 215–220 (1999)CrossRefGoogle Scholar
  34. 34.
    J.E. Bartmess, Thermodynamics of the electron and the proton. J. Phys. Chem. 98(25), 6420–6424 (1994)CrossRefGoogle Scholar
  35. 35.
    J.J. Rimarčik, V. Lukeš, E. Klein, M. Ilčin, Study of the solvent effect on the enthalpies of hemolytic and heterolytic N-H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine. J. Mol. Struct. (Theochem) 952(1-3), 25–30 (2010)CrossRefGoogle Scholar
  36. 36.
    J.A. Riddick, W.B. Bunger, T.K. Sakano, Organic Solvents (Wiley, New York, 1986)Google Scholar
  37. 37.
    R. Guitard, V. Nardello-Rataj, J.M. Aubry, Theoretical and kinetic tools for selecting effective antioxidants: Application to the protection of omega-3 oils with natural and synthetic phenols. Int. J. Mol. Sci. 17(8), 1220–1245 (2016)CrossRefGoogle Scholar
  38. 38.
    M.J. Li, L. Liu, Y. Fu, Q.X. Guo, Accurate bond dissociation enthalpies of popular antioxidants predicted by the ONIOM-G3B3 method. J. Mol. Struct. (Theochem) 815(1-3), 1–9 (2007)Google Scholar
  39. 39.
    L.R. Mahoney, G.D. Mendenhall, K.U. Ingold, Calorimetric and equilibrium studies on some stable nitroxide and iminoxy radicals. Approximate oxygen-hydrogen bond dissociation energies in hydroxylamines and oximes. J. Am. Chem. Soc. 95(26), 8610–8614 (1973)CrossRefGoogle Scholar
  40. 40.
    R. Franke, Theoretical Drug Design Methods (Elsevier, Amsterdam, 1984)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of General Food Chemistry, Faculty of Biotechnology and Food SciencesLodz University of TechnologyLodzPoland

Personalised recommendations