Food Biophysics

, Volume 14, Issue 2, pp 132–141 | Cite as

The Synergistic Antibacterial Properties of Glycinin Basic Peptide against Bacteria via Membrane Damage and Inactivation of Enzymes

  • Hou Qi Ning
  • Ying Qiu LiEmail author
  • Zhao Sheng WangEmail author
  • Hai Zhen Mo


This study investigated the antibacterial properties of glycinin basic peptide (GBP), a natural antibacterial component from soybean protein, against Staphylococcus aureus (S. aureus). The minimum inhibitory and bactericidal concentrations of GBP against S. aureus were 0.2 mg/mL and 0.8 mg/mL, respectively. Flow cytometry analysis manifested that GBP decreased the number of intact and normal cells. Higher concentrations of GBP induced more severe damage of the bacterial membrane; the maximal percentage of injured and dead cells was 93.8% with 0.8 mg/mL GBP. Electron microscopy imaging visually showed the morphological damage of S. aureus by GBP. Intracellular K+ leakage and the membrane depolarization of S. aureus further verified that GBP could destroy the bacterial membrane. Moreover, GBP decreased the activity of nonspecific esterase and ATPase of S. aureus in a concentration-dependent manner. These results demonstrated that GBP exhibited antibacterial properties against S. aureus via synergistic actions of damage to the cell membrane and inactivation of metabolic enzymes.


Glycinin basic peptide Staphylococcus aureus Flow cytometry Cell membrane damage Inactivation of enzymes 



The authors would like to express their gratitude to the National Natural Science Foundation of China (31371839), Funds of Shandong “Double Tops” Program (SYT2017XTTD04), A Project of Shandong Province Higher Educational Science and Technology Program (J18KA154), and the 2017-year Support Program for Introduction of Urgently Needed Talents in Western Economic Upwarping Zone and Poverty-alleviation-exploitation Key Area in Shandong Province, as well as the Program for Science and Technology Innovation Team in Universities of Henan Province (16IRTSTHN007).

Compliance with Ethical Standards

Conflicts of Interest

The authors declare no conflicts of interest.


  1. 1.
    A.M. Rossi, Publications from international organizations on public health. Ann. Ist. Super. Sanita 102(11), 324–326 (2014)Google Scholar
  2. 2.
    G. Li, S. Wu, W. Luo, Y. Su, Y. Luan, X. Wang, Staphylococcus aureus ST6-t701 isolates from food-poisoning outbreaks (2006-2013) in Xi'an, China. Foodborne Pathog. Dis. 12(3), 203–206 (2015)Google Scholar
  3. 3.
    E. Scallan, R.M. Hoekstra, F.J. Angulo, R.V. Tauxe, M.A. Widdowson, S.L. Roy, J.L. Jones, P.M. Griffin, Foodborne illness acquired in the United States-major pathogens. Emerg. Infect. Dis. 17(1), 7–15 (2011)Google Scholar
  4. 4.
    P. Chaibenjawong, S.J. Foster, Desiccation tolerance in Staphylococcus aureus. Arch. Microbiol. 193(2), 125–135 (2011)Google Scholar
  5. 5.
    A.E. Waters, T. Contentecuomo, J. Buchhagen, C.M. Liu, L. Watson, K. Pearce, J.T. Foster, J. Bowers, E.M. Driebe, D.M. Engelthaler, Multidrug-resistant Staphylococcus aureus in US meat and poultry. Clin. Infect. Dis. 52(10), 1227–1230 (2011)Google Scholar
  6. 6.
    M. Schmitt, U. Schuler-Schmid, W. Schmidt-Lorenz, Temperature limits of growth, TNase and enterotoxin production of Staphylococcus aureus strains isolated from foods. Int. J. Food Microbiol. 11(1), 1–19 (1990)Google Scholar
  7. 7.
    G.L. Archer, Staphylococcus aureus: A well-armed pathogen. Clin. Infect. Dis. 26(5), 1179–1181 (1998)Google Scholar
  8. 8.
    L.Y. Le, F. Baron, M. Gautier, Staphylococcus aureus and food poisoning. Genet. Mol. Res. 2(1), 63–76 (2003)Google Scholar
  9. 9.
    M.A. Argudin, M.C. Mendoza, M.R. Rodicio, Food poisoning and Staphylococcus aureus enterotoxins. Toxins. 2(7), 1751–1773 (2010)Google Scholar
  10. 10.
    W. Yuan, H.G. Yuk, Antimicrobial efficacy of Syzygium antisepticum plant extract against Staphylococcus aureus and methicillin-resistant S. aureus and its application potential with cooked chicken. Food Microbiol. 72, 176–184 (2018)Google Scholar
  11. 11.
    P. Dehghan, A. Mohammadi, H. Mohammadzadeh-Aghdash, J. Ezzati Nazhad Dolatabadi, Pharmacokinetic and toxicological aspects of potassium sorbate food additive and its constituents. Trends Food Sci. Technol. 80, 123–130 (2018)Google Scholar
  12. 12.
    D. Majou, S. Christieans, Mechanisms of the bactericidal effects of nitrate and nitrite in cured meats. Meat Sci. 145, 273–284 (2018)Google Scholar
  13. 13.
    S. Christiansen, Possible endocrine disrupting effects of parabens and their metabolites. Reprod. Toxicol. 30(2), 301–312 (2010)Google Scholar
  14. 14.
    S. Mamur, D. Yuzbasioglu, F. Unal, S. Yilmaz, Does potassium sorbate induce genotoxic or mutagenic effects in lymphocytes? Toxicol. in Vitro 24(3), 790–794 (2010)Google Scholar
  15. 15.
    S. Khanna, P.R. Dash, P.D. Darbre, Exposure to parabens at the concentration of maximal proliferative response increases migratory and invasive activity of human breast cancer cells in vitro. J. Appl. Toxicol. 34(9), 1051–1059 (2014)Google Scholar
  16. 16.
    W. Bedale, J.J. Sindelar, A.L. Milkowski, Dietary nitrate and nitrite: Benefits, risks, and evolving perceptions. Meat Sci. 120, 85–92 (2016)Google Scholar
  17. 17.
    S. Subramaniam, N. Rajendran, S.B. Muralidharan, G. Subramaniam, R. Raju, A. Sivasubramanian, Dual role of select plant based nutraceuticals as antimicrobial agents to mitigate food borne pathogens and as food preservatives. RSC Adv. 5(94), 77168–77174 (2015)Google Scholar
  18. 18.
    S. Hu, H. Liu, S. Qiao, P. He, X. Ma, W. Lu, Development of immunoaffinity chromatographic method for isolating glycinin (11S) from soybean proteins. J. Agric. Food Chem. 61(18), 4406–4410 (2013)Google Scholar
  19. 19.
    D.B. Yuan, X.Q. Yang, C.H. Tang, Z.X. Zheng, A. WeiMin, S.W.Y. Ijaz, Physicochemical and functional properties of acidic and basic polypeptides of soy glycinin. Food Res. Int. 42(5), 700–706 (2009)Google Scholar
  20. 20.
    Y.Q. Li, X.X. Sun, J.L. Feng, H.Z. Mo, Antibacterial activities and membrane permeability actions of glycinin basic peptide against Escherichia coli. Innovative Food Sci. Emerg. Technol. 31, 170–176 (2015)Google Scholar
  21. 21.
    J. Hou, Y.Q. Li, Z.S. Wang, G.J. Sun, H.Z. Mo, Applicative effect of glycinin basic polypeptide in fresh wet noodles and antifungal characteristics. LWT-food. Sci. Technol. 83(15), 267–274 (2017)Google Scholar
  22. 22.
    G.P. Zhao, Y.Q. Li, G.J. Sun, H.Z. Mo, Antibacterial actions of glycinin basic peptide against Escherichia coli. J. Agric. Food Chem. 65(25), 5173–5180 (2017)Google Scholar
  23. 23.
    Y.Q. Li, M. Hao, J. Yang, H.Z. Mo, Effects of glycinin basic polypeptide on sensory and physicochemical properties of chilled pork. Food Sci. Biotechnol. 25(3), 803–809 (2016)Google Scholar
  24. 24.
    Clinical and Laboratory Standards Institute (CLSI), M100 Performance standards for antimicrobial susceptibility testing, 28th edition. M07-Ed11. Wayne, PA: Clinical and Laboratory Standards Institute (2018)Google Scholar
  25. 25.
    C.B. Correa, C.B. Correa, J.G.P. Martin, E. Porto, S.M. Alencar, Antilisterial activity of broccoli stems (brassica oleracea) by flow cytometry. Int. Food Res. J. 24(1), 395–399 (2014)Google Scholar
  26. 26.
    J.R. Loewenberg, Cyanide and the determination of protein with the Folin phenol reagent. Anal. Biochem. 19(1), 95–97 (1967)Google Scholar
  27. 27.
    B.H. Liu, T.S. Wu, M.C. Su, C.P. Chung, F.Y. Yu, Evaluation of citrinin occurrence and cytotoxicity in Monascus fermentation products. J. Agric. Food Chem. 53(1), 170–175 (2005)Google Scholar
  28. 28.
    R.G. Combarros, S. Collado, M. Diaz, Toxicity of graphene oxide on growth and metabolism of Pseudomonas putida. J. Hazard. Mater. 310, 246–252 (2016)Google Scholar
  29. 29.
    A. Paparella, L. Taccogna, I. Aguzzi, C. Chaves-Lopez, A. Serio, F. Marsilio, G. Suzzi, Flow cytometric assessment of the antimicrobial activity of essential oils against Listeria monocytogenes. Food Control 19(12), 1174–1182 (2008)Google Scholar
  30. 30.
    F. Liu, F. Wang, L. Du, T. Zhao, M.P. Doyle, D. Wang, X. Zhang, Z. Sun, W. Xu, Antibacterial and antibiofilm activity of phenyllactic acid against Enterobacter cloacae. Food Control 84, 442–448 (2018)Google Scholar
  31. 31.
    J. Tian, Y. Wang, Z. Lu, C. Sun, Z. Man, A. Zhu, P. Xue, Perillaldehyde, a promising antifungal agent used in food preservation, triggers apoptosis through a metacaspase-dependent pathway in Aspergillus flavus. J. Agric. Food Chem. 64(39), 7404–7413 (2016)Google Scholar
  32. 32.
    C. Hyemin, H. Jae-Sam, L.D. Gun, Antifungal effect and pore-forming action of lactoferricin b like peptide derived from centipede scolopendra subspinipes mutilans. Biochim. Biophys. Acta 1828(11), 2745–2750 (2013)Google Scholar
  33. 33.
    M.Z. Sitohy, S.A. Mahgoub, A.O. Osman, In vitro and in situ antimicrobial action and mechanism of glycinin and its basic subunit. Int. J. Food Microbiol. 154(1–2), 19–29 (2012)Google Scholar
  34. 34.
    S. Shabala, L. Shabala, Ion transport and osmotic adjustment in plants and bacteria. Biomol. Concepts. 2(5), 407–419 (2011)Google Scholar
  35. 35.
    J. Miao, J. Zhou, G. Liu, F. Chen, Y. Chen, X. Gao, W. Dixon, M. Song, H. Xiao, Y. Cao, Membrane disruption and DNA binding of Staphylococcus aureus, cell induced by a novel antimicrobial peptide produced by Lactobacillus paracasei, subsp. tolerans, FX-6. Food Control 59, 609–613 (2016)Google Scholar
  36. 36.
    T. Hada, Y. Inoue, A. Shiraishi, H. Hamashima, Leakage of K+ ions from Staphylococcus aureus in response to tea tree oil. J. Microbiol. Methods 53(3), 309–312 (2003)Google Scholar
  37. 37.
    W. Shen, P. Li, H. Feng, Y. Ge, Z. Liu, L. Feng, The bactericidal mechanism of action against Staphylococcus aureus for AgO nanoparticles. Mater. Sci. Eng. C. 75(1), 610–619 (2017)Google Scholar
  38. 38.
    R. Petruzzelli, M.E. Clementi, S. Marini, M. Coletta, E.D. Stasio, B. Giardina, F. Misiti, Respiratory inhibition of isolated mammalian mitochondria by salivary antifungal peptide histatin-5. Biochem. Biophys. Res. Commun. 311(4), 1034–1040 (2003)Google Scholar
  39. 39.
    Y. Lv, Z. Niu, Y. Chen, Y. Hu, Bacterial effects and interfacial inactivation mechanism of nzvi/pd on pseudomonas putida strain. Water Res. 115, 297–308 (2017)Google Scholar
  40. 40.
    S.P. Chakraborty, S.K. Sahu, P. Pramanik, S. Roy, In vitro antimicrobial activity of nanoconjugated vancomycin against drug resistant Staphylococcus aureus. Int. J. Pharm. 436(1–2), 659–676 (2012)Google Scholar
  41. 41.
    D. Xi, X. Wang, D. Teng, R. Mao, Y. Zhang, X. Wang, J. Wang, Mechanism of action of the tri-hybrid antimicrobial peptide LHP7 from lactoferricin, HP and plectasin on Staphylococcus aureus. Biometals 27(5), 957–968 (2014)Google Scholar
  42. 42.
    J. Hong, W. Guan, G. Jin, H. Zhao, X. Jiang, J. Dai, Mechanism of tachyplesin I injury to bacterial membranes and intracellular enzymes, determined by laser confocal scanning microscopy and flow cytometry. Microbiol. Res. 170, 69–77 (2015)Google Scholar
  43. 43.
    A.S. Chakotiya, A. Tanwar, A. Narula, R.K. Sharma, Zingiber officinale: Its antibacterial activity on Pseudomonas aeruginosa and mode of action evaluated by flow cytometry. Microb. Pathogenesis. 107, 254–260 (2017)Google Scholar
  44. 44.
    A. Sharma, S. Srivastava, Anti-Candida activity of two-peptide bacteriocins, plantaricins (Pln E/F and J/K) and their mode of action. Fungal Biol. 118(2), 264–275 (2014)Google Scholar
  45. 45.
    J.I. Sudo, J. Terui, H. Iwase, K. Kakuno, Assay of ATPase and Na, K-ATPase activity using high-performance liquid chromatographic determination of ADP derived from ATP. J. Chromatogr. B Biomed. Sci. Appl. 744(1), 19–23 (2000)Google Scholar
  46. 46.
    J.H. Kaplan, Biochemistry of Na, K-ATPase. Annu. Rev. Biochem. 71(1), 511–535 (2002)Google Scholar
  47. 47.
    P. Santos, A. Gordillo, L. Osses, L.M. Salazar, C.Y. Soto, Effect of antimicrobial peptides on ATPase activity and proton pumping in plasma membrane vesicles obtained from mycobacteria. Peptides 36(1), 121–128 (2012)Google Scholar
  48. 48.
    S. Chingate, G. Delgado, L.M. Salazar, C.Y. Soto, The ATPase activity of the mycobacterial plasma membrane is inhibited by the LL37-analogous peptide LLAP. Peptides 71, 222–228 (2015)Google Scholar
  49. 49.
    E. Rico-Munoz, E.E. Bargiota, P.M. Davidson, Effect of selected phenolic compounds on the membrane-bound adenosine triphosphatase of Staphylococcus aureus. Food Microbiol. 4(3), 239–249 (1987)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Food Science & EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
  2. 2.Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and EngineeringShandong Agricultural UniversityTaianChina
  3. 3.School of Food ScienceHenan Institute of Science and TechnologyXinxiangChina

Personalised recommendations