Impact of Concentration Ratio on the Formation and Stability of Emulsions Stabilized by Quillaja Saponin – Sodium Caseinate Mixtures

  • Hanna SalminenEmail author
  • Sonja Bischoff
  • Jochen Weiss


The stabilization of interfaces with mixed emulsifiers composed of natural ingredients is of increasing interest in order to modulate stability of food colloids. To this purpose, we first investigated the emulsifying properties of binary emulsifier mixtures composed of natural and food-grade ingredients. We prepared oil-in-water emulsions (10% oil) stabilized by Quillaja saponin-sodium caseinate mixtures at different concentration ratios (r = 5:0, 4:1, 3:2, 2:3, 1:4, 0:5) with the total concentration set to 0.5% and pH set to 7 or 3. Second, we tested the emulsion stability against environmental stresses. The emulsions produced with binary emulsifier mixtures at low Quillaja saponin ratios (r = 2:3 and 1:4, pH 7) showed the best overall performance in terms of generating small and physically stable emulsion droplets similarly to the emulsions stabilized with Na-caseinate or Quillaja saponins alone, whereas at higher Quillaja saponin ratios (r = 4:1, 3:2) the emulsions were unstable. At r = 2:3 and 1:4, the emulsions were also stable at ≤90 °C and ≤200 mM NaCl. Furthermore, they were also stable upon pH change to 2, whereas emulsions stabilized with Quillaja saponins alone (r = 5:0) flocculated. These results demonstrated that the emulsifying properties of mixed binary emulsifiers comprising natural components and subsequent stability of the emulsions is highly dependent on the applied concentration ratio. This study provides valuable insights into the techno-functionality of binary emulsifier systems.


Binary emulsifier system Concentration ratio Quillaja saponin Sodium caseinate Oil-in-water emulsion Stability 



  1. 1.
    B. Ozturk, D.J. McClements, Curr. Opin. Food Sci. 7, 1–6 (2016)CrossRefGoogle Scholar
  2. 2.
    G. Francis, Z. Kerem, H.P.S. Makkar, K. Becker, Br. J. Nutr. 88(06), 587–605 (2002)CrossRefGoogle Scholar
  3. 3.
    S. Böttcher, S. Drusch, Food Biophys 11(1), 91–100 (2016)CrossRefGoogle Scholar
  4. 4.
    Y. Yang, M.E. Leser, A.A. Sher, D.J. McClements, Food Hydrocoll. 30(2), 589–596 (2013)CrossRefGoogle Scholar
  5. 5.
    S. Mitra, S.R. Dungan, Colloids Surf. B 17(117–133) (2000)Google Scholar
  6. 6.
    T. Ralla, H. Salminen, M. Edelmann, C. Dawid, T. Hofmann, J. Weiss, J. Agric. Food Chem. 65(20), 4153–4160 (2017)CrossRefGoogle Scholar
  7. 7.
    R. San Martín, R. Briones, Econ. Bot. 53(3), 302–311 (1999)CrossRefGoogle Scholar
  8. 8.
    European Parliament, Regulation (EC) no 1333/2008 of the European Parliament and of the Council of 16 December 2008 on Food Additives. (2008), Accessed 18 July 2018
  9. 9.
    E. Dickinson, Soft Matter 2(8), 642–652 (2006)CrossRefGoogle Scholar
  10. 10.
    D.J. McClements, S.M. Jafari, Adv. Colloid Interf. Sci. 251, 55–79 (2018)CrossRefGoogle Scholar
  11. 11.
    R.A. Mantovani, Â.L.F. Cavallieri, F.M. Netto, R.L. Cunha, Food Funct. 4(9), 1322–1331 (2013)CrossRefGoogle Scholar
  12. 12.
    A. Nesterenko, A. Drelich, H. Lu, D. Clausse, I. Pezron, Colloids Surf. A Physicochem. Eng. Asp. 457(49–57) (2014)Google Scholar
  13. 13.
    H. Salminen, J. Weiss, Food Hydrocoll. 35, 410–419 (2014)CrossRefGoogle Scholar
  14. 14.
    K. Wojciechowski, A. Kezwon, J. Lewandowska, K. Marcinkowski, Food Hydrocoll. 34, 208–216 (2014)CrossRefGoogle Scholar
  15. 15.
    B.M.C. Pelan, K.M. Watts, I.J. Campbell, A. Lips, J. Dairy Sci. 80(10), 2631–2638 (1997)CrossRefGoogle Scholar
  16. 16.
    C.L. Reichert, H. Salminen, G. Badolato Bönisch, C. Schäfer, J. Weiss, J. Colloid Interface Sci. 519, 71–80 (2018)CrossRefGoogle Scholar
  17. 17.
    S. Ogawa, E.A. Decker, D.J. McClements, J. Agric. Food Chem. 51(9), 2806–2812 (2003)CrossRefGoogle Scholar
  18. 18.
    G. Secchi, Clin. Dermatol. 26(4), 321–325 (2008)CrossRefGoogle Scholar
  19. 19.
    J.A. Depree, G.P. Savage, Trends Food Sci. Technol. 12(5-6), 157–163 (2001)CrossRefGoogle Scholar
  20. 20.
    M.J. Rosen, Q. Zhou, Langmuir 17(12), 3532–3537 (2001)CrossRefGoogle Scholar
  21. 21.
    T. Huppertz, P.F. Fox, A.L. Kelly, in Proteins in Food Processing, ed. by R. Y. Yada. The Caseins: Structure, Stability, and Functionality (Woodhead Publishing, Duxford, 2018), pp. 49–92CrossRefGoogle Scholar
  22. 22.
    C. Amine, J. Dreher, T. Helgason, T. Tadros, Food Hydrocoll. 39, 180–186 (2014)CrossRefGoogle Scholar
  23. 23.
    C.L. Reichert, H. Salminen, B.H. Leuenberger, J. Hinrichs, J. Weiss, J. Food Sci. 80(11), E2495–E2503 (2015)CrossRefGoogle Scholar
  24. 24.
    C.L. Reichert, H. Salminen, B.H. Leuenberger, J. Weiss, Food Res. Int. 88(Pt A), 16–23 (2016)CrossRefGoogle Scholar
  25. 25.
    E. Dickinson, Curr. Opin. Colloid Interface Sci. 15(1-2), 40–49 (2010)CrossRefGoogle Scholar
  26. 26.
    C. Kotsmar, V. Pradines, V.S. Alahverdjieva, E.V. Aksenenko, V.B. Fainerman, V.I. Kovalchuk, J. Krägel, M.E. Leser, B.A. Noskov, R. Miller, Adv. Colloid Interf. Sci. 150(1), 41–54 (2009)CrossRefGoogle Scholar
  27. 27.
    K. Wojciechowski, M. Piotrowski, W. Popielarz, T.R. Sosnowski, Food Hydrocoll. 25(4), 687–693 (2011)CrossRefGoogle Scholar
  28. 28.
    D.J. McClements, C.E. Gumus, Adv. Colloid Interf. Sci. 234, 3–26 (2016)CrossRefGoogle Scholar
  29. 29.
    D.J. McClements, Food Emulsions Principles, Practices, and Techniques, 2nd edn. (CRC Press, Boca Raton, 2005)Google Scholar
  30. 30.
    P. Wilde, A. Mackie, F. Husband, P. Gunning, V. Morris, Adv. Colloid Interf. Sci. 108-109, 63–71 (2004)CrossRefGoogle Scholar
  31. 31.
    E. Dickinson, Colloids Surf. B 20(197–210) (2001)Google Scholar
  32. 32.
    C.L. Reichert, H. Salminen, J. Utz, G. Badolato Bönisch, C. Schäfer, J. Weiss, Colloid Interf. Sci. Commun 21, 15–18 (2017)CrossRefGoogle Scholar
  33. 33.
    R. Miller, V.B. Fainerman, A.V. Makievski, J. Krägel, D.O. Grigoriev, V.N. Kazakov, O.V. Sinyachenko, Adv. Colloid Interf. Sci. 86(1-2), 39–82 (2000)CrossRefGoogle Scholar
  34. 34.
    T. Ralla, H. Salminen, M. Edelmann, C. Dawid, T. Hofmann, J. Weiss, Food Biophys 12(3), 269–278 (2017)CrossRefGoogle Scholar
  35. 35.
    D.D. Perrin, Dissociation Constants of Organic Bases in Aquous Solution. Supplement (Butterworths, London, 1972)Google Scholar
  36. 36.
    D.S. Horne, Curr. Opin. Colloid Interface Sci. 28, 74–86 (2017)CrossRefGoogle Scholar
  37. 37.
    B. Ozturk, S. Argin, M. Ozilgen, D.J. McClements, J. Food Eng. 142, 57–63 (2014)CrossRefGoogle Scholar
  38. 38.
    M. Srinivasan, H. Singh, P.A. Munro, Food Hydrocoll. 14(5), 497–507 (2000)CrossRefGoogle Scholar
  39. 39.
    E. Dickinson, Colloids Surf, B 81(130–140) (2010)Google Scholar
  40. 40.
    K. Takase, R. Niki, S. Arima, Biochim. Biophysic. Acta Protein Struct 622(1), 1–8 (1980)CrossRefGoogle Scholar
  41. 41.
    C. Maier, B. Zeeb, J. Weiss, Colloids Surf. B 117(368–375) (2014)Google Scholar
  42. 42.
    E. Dickinson, Colloids Surf. A Physicochem. Eng. Asp. 288(3–11) (2006)Google Scholar
  43. 43.
    B.M. Degner, C. Chung, V. Schlegel, R. Hutkins, D.J. McClements, Compr. Rev. Food Sci. Food Saf. 13(2), 98–113 (2014)CrossRefGoogle Scholar
  44. 44.
    T. Ralla, H. Salminen, M. Edelmann, C. Dawid, T. Hofmann, J. Weiss, Food Hydrocoll. 81, 253–262 (2018)CrossRefGoogle Scholar
  45. 45.
    S. Ghosh, G.L. Cramp, J.N. Coupland, Colloids Surf. A Physicochem. Eng. Asp. 272(1-2), 82–88 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food Physics and Meat Science, Institute of Food Science and BiotechnologyUniversity of HohenheimStuttgartGermany

Personalised recommendations