Assessing Quality of Life in an Obesity Observational Study: a Structural Equation Modeling Approach

  • N. DardenneEmail author
  • B. Pétré
  • E. Husson
  • M. Guillaume
  • A. F. Donneau


Quality of life (QOL) of a patient is usually computed as the (weighted) sum of items and analysed by means of multiple regressions to evaluate its relationships with various measured factors. The aim of the present study was to compare results derived under classical statistical method with those obtained under more appropriate statistical techniques for QOL. Analyses were applied to data from 4155 subjects participated in 2012 in a community based sample study in the French speaking part of Belgium and which completed a web-based questionnaire on their weight-related experience. Confirmatory factor analysis (CFA) and structural equation modeling (SEM) were carried out to derive QOL and to test direct/indirect effects of body mass index (BMI), age, body image discrepancy (BID), latent socio-economic (SOCIO) and latent subjective-norm (SN). No major differences were found under both SEM and the product of coefficients approach using SAS PROCESS macro developed by Hayes. Significant direct and indirect effects on physical and psychological dimensions of QOL were found for age, BMI and SOCIO while significant direct effects were found for BID and SN (p < 0.0001). Factor loadings were found to be significantly different according to gender (p < 0.0001). BID and SN are partially mediators on the relationships between BMI and QOL. The study also confirms the role of SOCIO on the (un)observable variables included in the model. However, the large sample size provided significant tests with small effect size and couldn’t highlight pertinent differences between both methods.


Confirmatory analysis Structural equation modeling Quality of life Latent constructs Mediation analysis 



This work was supported by the European Regional Development Fund and the Belgian public health authorities (Program INTERREG IV – 50WLL/3/3/136).

Compliance with Ethical Standards

Conflict of Interest

The authors report no conflicts of interest in this work.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

As collected data were anonymous, no written informed consent was required by the ethics committee of the University hospital of Liège, patient consent was assumed based on their voluntary participation.


  1. Aghili, R., Ridderstråle, M., Kia, M., Ebrahim Valojerdi, A., Malek, M., Farshchi, A., & Khamseh, M. E. (2017). The challenge of living with diabetes in women and younger adults: a structural equation model. Primary Care Diabetes, 11(5), 467–473. Scholar
  2. Annette Alstadsæter, E. A., Alstadsæter, A., & Feiring, E. (2014). Does healthcare moderate the impact of socioeconomic status on Selfrated Health? Journal of Clinical Research & Bioethics, 05(01).
  3. Arpey, N. C., Gaglioti, A. H., & Rosenbaum, M. E. (2017). How socioeconomic status affects patient perceptions of health care: a qualitative study. Journal of Primary Care & Community Health, 8(3), 169–175. Scholar
  4. Ashing-Giwa, K. T., & Lim, J.-W. (2008). Predicting health-related quality of life: testing the contextual model using structural equation modeling. Applied Research in Quality of Life, 3(3), 215–230. Scholar
  5. Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173–1182. Accessed 14 Nov 2017.Google Scholar
  6. Barrett, P. (2007). Structural equation modelling: adjudging model fit. Personality and Individual Differences, 42(5), 815–824. Scholar
  7. Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–246. Accessed 15 Nov 2017.Google Scholar
  8. Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588–606. Scholar
  9. Blumenthal, S. J., & Kagen, J. (2002). The effects of socioeconomic status on health in rural and urban America. JAMA, 287(1), 109. Scholar
  10. Boehmer, S., & Luszczynska, A. (2006). Two kinds of items in quality of life instruments: ‘indicator and causal variables’ in the EORTC QLQ-C30. Quality of Life Research, 15(1), 131–141. Scholar
  11. Bofah, E. A., & Hannula, M. S. (2017). Home resources as a measure of socio-economic status in Ghana. Large-Scale Assessments in Education, 5(1), 1. Scholar
  12. Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods & Research, 21(2), 230–258. Scholar
  13. Cha, K. M., Chung, Y. K., Lim, K. Y., Noh, J. S., Chun, M., Hyun, S. Y., Kang, D. R., Oh, M. J., & Kim, N. H. (2017). Depression and insomnia as mediators of the relationship between distress and quality of life in cancer patients. Journal of Affective Disorders, 217, 260–265. Scholar
  14. Costa, D. S. J. (2015). Reflective, causal, and composite indicators of quality of life: a conceptual or an empirical distinction? Quality of Life Research, 24(9), 2057–2065. Scholar
  15. Danner, D., Hagemann, D., & Fiedler, K. (2015). Mediation analysis with structural equation models: combining theory, design, and statistics. European Journal of Social Psychology, 45(4), 460–481. Scholar
  16. Donneau, A. F., Mauer, M., Coens, C., Bottomley, A., & Albert, A. (2014). Longitudinal quality of life data: a comparison of continuous and ordinal approaches. Quality of Life Research, 23(10), 2873–2881. Scholar
  17. Dragan, A., & Akhtar-Danesh, N. (2007). Relation between body mass index and depression: a structural equation modeling approach. BMC Medical Research Methodology, 7(1), 17. Scholar
  18. Fitzpatrick, R., Fletcher, A., Gore, S., Jones, D., Spiegelhalter, D., & Cox, D. (1992). Quality of life measures in health care. I: applications and issues in assessment. BMJ (Clinical research ed.), 305(6861), 1074–1077. Accessed 5 Dec 2017.Google Scholar
  19. Hayes, A. F. (1986). PROCESS: A Versatile Computational Tool for Observed Variable Mediation, Moderation, and Conditional Process Modeling 1. Accessed 23 March 2018.
  20. Hayes, A. F., Montoya, A. K., & Rockwood, N. J. (2017). The analysis of mechanisms and their contingencies: PROCESS versus structural equation modeling. Australasian Marketing Journal; AMJ, 25(1), 76–81. Scholar
  21. Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. Scholar
  22. Iacobucci, D., Saldanha, N., & Deng, X. (2007). A meditation on mediation: evidence that structural equations models perform better than regressions. Journal of Consumer Psychology, 17(2), 139–153. Scholar
  23. Kline, R. B. (2011). Principles and practice of structural equation modeling. New York: Guilford Press.Google Scholar
  24. Krieger, N., Williams, D. R., & Moss, N. E. (1997). Measuring social class in US public health research: concepts, methodologies, and guidelines. Annual Review of Public Health, 18(1), 341–378. Scholar
  25. Litwin, H., & Sapir, E. V. (2009). Perceived income adequacy among older adults in 12 countries: findings from the survey of health, ageing, and retirement in Europe. The Gerontologist, 49(3), 397–406. Scholar
  26. MacKinnon, D. P., Fairchild, A. J., & Fritz, M. S. (2007). Mediation analysis. Annual Review of Psychology, 58, 593–614. Scholar
  27. Marmot, M. (2013). Report on social determinants of health and the health divide in the WHO European region. World Health Organization., 234. Accessed 14 Nov 2017.
  28. Martinez, S. A., Beebe, L. A., Thompson, D. M., Wagener, T. L., Terrell, D. R., & Campbell, J. E. (2018). A structural equation modeling approach to understanding pathways that connect socioeconomic status and smoking. PLoS One, 13(2), e0192451. Scholar
  29. Meuleners, L. B., Lee, A. H., Binns, C. W., & Lower, A. (2003). Quality of life for adolescents: Assessing measurement properties using structural equation modelling. Quality of Life Research: an International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 12(3), 283–290. Accessed 17 Nov 2017.Google Scholar
  30. Moon, J. R., Cho, Y. A., Huh, J., Kang, I.-S., & Kim, D.-K. (2016). Structural equation modeling of the quality of life for patients with marfan syndrome. Health and Quality of Life Outcomes, 14(1), 83. Scholar
  31. Niyonsenga, T., Trepka, M. J., Lieb, S., & Maddox, L. M. (2013). Measuring socioeconomic inequality in the incidence of AIDS: rural-urban considerations. AIDS and Behavior, 17(2), 700–709. Scholar
  32. Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory. New York: McGraw-Hill.Google Scholar
  33. Øvrum, A. (2011). Socioeconomic status and lifestyle choices: evidence from latent class analysis. Health Economics, 20(8), 971–984. Scholar
  34. Pétré, B., Donneau, A.-F., Crutze, C., Husson, E., Scheen, A., & Guillaume, M. (2015). Obese subjects involvement in a population-based survey: the use of information and communication technologies (ICT) to avoid stigmatization. Quality of Life Research, 24(5), 1131–1135. Scholar
  35. Pétré, B., Scheen, A., Ziegler, O., Donneau, A.-F., Dardenne, N., Husson, E., Albert, A., & Guillaume, M. (2016). Body image discrepancy and subjective norm as mediators and moderators of the relationship between body mass index and quality of life. Patient Preference and Adherence, 10, 2261–2270. Scholar
  36. Post, M. W. M. (2014). Definitions of quality of life: what has happened and how to move on. Topics in Spinal Cord Injury Rehabilitation, 20(3), 167–180. Scholar
  37. Ribeiro, M. R. C., da Silva, A. A. M., de Britto e Alves, M. T. S. S., Batista, R. F. L., Ribeiro, C. C. C., Schraiber, L. B., et al. (2017). Effects of socioeconomic status and social support on violence against pregnant women: a structural equation modeling analysis. PLoS One, 12(1), e0170469. Scholar
  38. Rosseel, Y. (2012). Lavaan : an R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36. Scholar
  39. Rosseel, Y. (2014). Structural equation modeling with lavaan. Using R for personality research, 1–127. Accessed 14 Nov 2017.
  40. Rosseel, Y. (2017). The lavaan tutorial. Accessed 15 Nov 2017.
  41. Sartipi, M., Nedjat, S., Mansournia, M. A., Baigi, V., & Fotouhi, A. (2016). Assets as a socioeconomic status index: categorical principal components analysis vs. latent class analysis. Archives of Iranian Medicine, 19(11), 791–796 doi:0161911/AIM.009.Google Scholar
  42. Scheen, A., Bourguignon, J. P., Hubermont, G., Ziegler, O., Böhme, P., Collin, J. F., Romain, M. L., Lair, M., de Beaufort, C., Michel, G., & Guillaume, M. (2010). Éducation thérapeutique et préventive face au diabète et à l’obésité à risque chez l’adulte et l’adolescent : le projet Interreg IV EDUDORA2. Diabetes & Metabolism, 36, A84. Scholar
  43. Sideridis, G., Simos, P., Papanicolaou, A., & Fletcher, J. (2014). Using structural equation modeling to assess functional connectivity in the brain: power and sample size considerations. Educational and Psychological Measurement, 74(5), 733–758. Scholar
  44. Steen, J., Loeys, T., Moerkerke, B., & Vansteelandt, S. (2017). Medflex: an R package for flexible mediation analysis using natural effect models. Journal of Statistical Software, 76(11), 1–46. Scholar
  45. Stephenson, M. T., Holbert, R. L., & Zimmerman, R. S. (2006). On the use of structural equation modeling in health communication research. Health Communication, 20(2), 159–167. Scholar
  46. Stevens, J. (2009). Applied multivariate statistics for the social sciences. In J. P. Stevens (Ed.), Version details - Trove (5th ed.). New York : Routledge, c2009. Accessed 15 Nov 2017.
  47. Stunkard, A. J., Sørensen, T., & Schulsinger, F. (1983). Use of the Danish adoption register for the study of obesity and thinness. Research Publications - Association for Research in Nervous and Mental Disease, 60, 115–120. Accessed 14 Nov 2017.Google Scholar
  48. VanderWeele, T. J. (2016). Mediation analysis: a practitioner’s guide. Annual Review of Public Health, 37(1), 17–32. Scholar
  49. Verdugo, M. A., Schalock, R. L., Keith, K. D., & Stancliffe, R. J. (2005). Quality of life and its measurement: important principles and guidelines. Journal of Intellectual Disability Research, 49(10), 707–717. Scholar
  50. Wagstaff, A., & Watanabe, N. (2003). What difference does the choice of SES make in health inequality measurement? Health Economics, 12(10), 885–890. Scholar
  51. Wolf, E. J., Harrington, K. M., Clark, S. L., & Miller, M. W. (2013). Sample size requirements for structural equation models: An evaluation of power, Bias, and solution propriety. Educational and Psychological Measurement, 76(6), 913–934. Scholar
  52. Yang Hansen, K., & Munck, I. (2012). Exploring the measurement profiles of socioeconomic background indicators and their differences in reading achievement: A two-level latent class analysis. IERI Monograph Series, 5. Accessed 27 Feb 2018.
  53. Yanuar, F., Ibrahim, K., & Jemain, A. A. (2010). On the application of structural equation modeling for the construction of a health index. Environmental Health and Preventive Medicine, 15(5), 285–291. Scholar
  54. Ziegler, O., Filipecki, J., Girod, I., & Guillemin, F. (2005). Development and validation of a French obesity-specific quality of life questionnaire: Quality of life, obesity and dietetics (QOLOD) rating scale. Diabetes & Metabolism, 31(3 Pt 1), 273–283. Accessed 14 Nov 2017.Google Scholar

Copyright information

© The International Society for Quality-of-Life Studies (ISQOLS) and Springer Nature B.V. 2019

Authors and Affiliations

  • N. Dardenne
    • 1
    • 2
    Email author
  • B. Pétré
    • 1
  • E. Husson
    • 1
  • M. Guillaume
    • 1
  • A. F. Donneau
    • 1
  1. 1.Department of Public Health, Quartier HôpitalUniversity of LiègeLiègeBelgium
  2. 2.Département des Sciences de la Santé publique, Quartier HôpitalUniversité de LiègeLiègeBelgium

Personalised recommendations