Advertisement

A Broad Application of CRISPR Cas9 in Infectious Diseases of Central Nervous System

  • Anna Bellizzi
  • Nicholas Ahye
  • Gauthami Jalagadugula
  • Hassen S. WolleboEmail author
Invited Review

Abstract

Virus-induced diseases or neurological complications are huge socio-economic burden to human health globally. The complexity of viral-mediated CNS pathology is exacerbated by reemergence of new pathogenic neurotropic viruses of high public relevance. Although the central nervous system is considered as an immune privileged organ and is mainly protected by barrier system, there are a vast majority of neurotropic viruses capable of gaining access and cause diseases. Despite continued growth of the patient population and a number of treatment strategies, there is no successful viral specific therapy available for viral induced CNS diseases. Therefore, there is an urgent need for a clear alternative treatment strategy that can effectively target neurotropic viruses of DNA or RNA genome. To address this need, rapidly growing gene editing technology based on CRISPR/Cas9, provides unprecedented control over viral genome editing and will be an effective, highly specific and versatile tool for targeting CNS viral infection. In this review, we discuss the application of this system to control CNS viral infection and associated neurological disorders and future prospects.

Graphical Abstract

CRISPR/Cas9 technology as agent control over CNS viral infection.

Keywords

CRISPR/Cas9 Neurotropic viruses CRISPR/Cas9 delivery system CRISPR/Cas9-mediated viral escape 

Notes

Acknowledgements

We thank past and present members of the Center for Neurovirology for their insightful discussion and sharing of ideas. This work was supported by seed money from Temple University awarded to HSW.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, Shmakov S, Makarova KS, Semenova E, Minakhin L, Severinov K, Regev A, Lander ES, Koonin EV, Zhang F (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353:aaf5573.  https://doi.org/10.1126/science.aaf5573 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ali Z, Ali S, Tashkandi M, Zaidi SS, Mahfouz MM (2016) CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion. Sci Rep 6:26912.  https://doi.org/10.1038/srep26912 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alimonti JB, Ball TB, Fowke KR (2003) Mechanisms of CD4+ T lymphocyte cell death in human immunodeficiency virus infection and AIDS. J Gen Virol 84:1649–1661CrossRefPubMedGoogle Scholar
  4. Archin NM, Liberty AL, Kashuba AD, Choudhary SK, Kuruc JD, Crooks AM. ... Richman DD (2012) Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487(7408): 482Google Scholar
  5. Arduino PG, Porter SR (2008) Herpes simplex virus type 1 infection: overview on relevant clinico-pathological features. J Oral Pathol Med 37:107–121CrossRefPubMedGoogle Scholar
  6. Arzumanyan A, Reis HM, Feitelson MA (2013) Pathogenic mechanisms in HBV-and HCV-associated hepatocellular carcinoma. Nat Rev Cancer 13:123–135CrossRefPubMedGoogle Scholar
  7. Azevedo LS, Pierrotti LC, Abdala E, Costa SF, Strabelli TM, Campos SV, Ramos JF, Latif AZ, Litvinov N, Maluf NZ, Caiaffa Filho HH, Pannuti CS, Lopes MH, Santos VA, Linardi Cda C, Yasuda MA, Marques HH (2015) Cytomegalovirus infection in transplant recipients. Clinics (Sao Paulo) 70:515–523CrossRefGoogle Scholar
  8. Badia R, Ballana E, Castellví M, García-Vidal E, Pujantell M, Clotet B, Prado JG, Puig J, Martínez MA, Riveira-Muñoz E, Esté JA (2018) CD32 expression is associated to T-cell activation and is not a marker of the HIV-1 reservoir. Nat Commun 9:2739.  https://doi.org/10.1038/s41467-018-05157-w CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bak RO, Gomez-Ospina N, Porteus MH (2018) Gene editing on center stage. Trends Genet 34:600–611CrossRefPubMedGoogle Scholar
  10. Barrangou R, Doudna JA (2016) Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34:933–941CrossRefPubMedGoogle Scholar
  11. Bayat H, Naderi F, Khan AH, Memarnejadian A, Rahimpour A (2018) The impact of CRISPR-Cas system on antiviral therapy. Adv Pharm Bull 8:591–597CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bearer EL (2012) HSV, axonal transport and Alzheimer’s disease: in vitro and in vivo evidence for causal relationships. Futur Virol 7(9):885–899CrossRefGoogle Scholar
  13. Bella R, Kaminski R, Mancuso P, Young WB, Chen C, Sariyer R ... Kashanchi F (2018) Removal of HIV DNA by CRISPR from patient blood engrafts in humanized mice. Mol Ther-Nucleic Acids 12: 275–282Google Scholar
  14. Bialek JK, Dunay GA, Voges M, Schäfer C, Spohn M, Stucka R et al (2016) Targeted HIV-1 latency reversal using CRISPR/Cas9-derived transcriptional activator systems. PLoS One 11(6):e0158294CrossRefPubMedPubMedCentralGoogle Scholar
  15. Biron KK, Fyfe JA, Stanat SC, Leslie LK, Sorrell JB, Lambe CU, Coen DM (1986) A human cytomegalovirus mutant resistant to the nucleoside analog 9-([2-hydroxy-1-(hydroxymethyl) ethoxy] methyl) guanine (BW B759U) induces reduced levels of BW B759U triphosphate. Proc Natl Acad Sci U S A 83:8769–8773CrossRefPubMedPubMedCentralGoogle Scholar
  16. Block TM, Gish R, Guo H, Mehta A, Cuconati A, London WT, Guo JT (2013) Chronic hepatitis B: what should be the goal for new therapies? Antivir Res 98(1):27–34CrossRefPubMedGoogle Scholar
  17. Bloom K, Maepa MB, Ely A, Arbuthnot P: Gene therapy for chronic HBV- can we eliminate cccDNA? Genes (Basel) 9:piiE207.  https://doi.org/10.3390/genes9040207
  18. Bogerd HP, Kornepati AV, Marshall JB, Kennedy EM, Cullen BR (2015) Specific induction of endogenous viral restriction factors using CRISPR/Cas-derived transcriptional activators. Proc Natl Acad Sci 112(52):E7249–E7256CrossRefPubMedGoogle Scholar
  19. Bollen Y, Post J, Koo BK, Snippert HJ (2018) How to create state-of-the-art genetic model systems: strategies for optimal CRISPR-mediated genome editing. Nucleic Acids Res 46(13):6435–6454CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:2551–2561CrossRefPubMedGoogle Scholar
  21. Carroll KJ, Makarewich CA, McAnally J, Anderson DM, Zentilin L, Liu N, Giacca M, Bassel-Duby R, Olson EN (2016) A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9. Proc Natl Acad Sci U S A 113:338–343CrossRefPubMedGoogle Scholar
  22. Casini A, Olivieri M, Petris G, Montagna C, Reginato G, Maule G, Lorenzin F, Prandi D, Romanel A, Demichelis F, Inga A, Cereseto A (2018) A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat Biotechnol 36:265–271CrossRefPubMedPubMedCentralGoogle Scholar
  23. Chang J, Guo JT (2015) Treatment of chronic hepatitis B with pattern recognition receptor agonists: current status and potential for a cure. Antivir Res 121:152–159CrossRefPubMedGoogle Scholar
  24. Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT, Cromer MK, Vakulskas CA, Collingwood MA, Zhang L, Bode NM, Behlke MA, Dejene B, Cieniewicz B, Romano R, Lesch BJ, Gomez-Ospina N, Mantri S, Pavel-Dinu M, Weinberg KI, Porteus MH (2019) Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med 25:249–254CrossRefPubMedGoogle Scholar
  25. Chaturvedi AK, Engels EA, Pfeiffer RM, Hernandez BY, Xiao W, Kim E et al (2011) Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol 29(32):4294CrossRefPubMedPubMedCentralGoogle Scholar
  26. Chen S, Lee B, Lee AY, Modzelewski AJ, He L (2016) Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. J Biol Chem 291:14457–14467CrossRefPubMedPubMedCentralGoogle Scholar
  27. Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, Sternberg SH, Joung JK, Yildiz A, Doudna JA (2017) Enhanced proofreading governs CRISPR–Cas9 targeting accuracy. Nature 550:407–410CrossRefPubMedPubMedCentralGoogle Scholar
  28. Chen YC, Sheng J, Trang P, Liu F (2018) Potential application of the CRISPR/Cas9 system against herpesvirus infections. Viruses 10:piiE291.  https://doi.org/10.3390/v10060291 CrossRefGoogle Scholar
  29. Cheng R, Peng J, Yan Y, Cao P, Wang J, Qiu C, Tang L, Liu D, Tang L, Jin J, Huang X, He F, Zhang P (2014) Highly efficient gene editing in adult mouse livers via adenoviral delivery of CRISPR/Cas9. FEBS Lett 588:3954–3958CrossRefPubMedGoogle Scholar
  30. Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA, Yassine-Diab B, Schacker TW (2009) HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med 15(8):893CrossRefPubMedPubMedCentralGoogle Scholar
  31. Chou YY, Krupp A, Kaynor C, Gaudin R, Ma M, Cahir-McFarland E, Kirchhausen T (2016) Inhibition of JCPyV infection mediated by targeted viral genome editing using CRISPR/Cas9. Sci Rep 6:36921.  https://doi.org/10.1038/srep36921 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kühn R (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33:543–548CrossRefPubMedGoogle Scholar
  33. Cohen JI, Fauci AS, Varmus H, Nabel GJ (2011) Epstein Barr virus: an important vaccine target for cancer preventation. Sci Transl Med 3:107fs7.  https://doi.org/10.1126/scitranslmed.3002878 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Colby DJ, Trautmann L, Pinyakorn S, Leyre L, Pagliuzza A, Kroon E et al (2018) Rapid HIV RNA rebound after antiretroviral treatment interruption in persons durably suppressed in Fiebig I acute HIV infection. Nat Med 24:923–926CrossRefPubMedPubMedCentralGoogle Scholar
  35. Craddock J, Heslop HE (2008) Adoptive cellular therapy with T cells specific for EBV-derived tumor antigens. Update Cancer Ther 3(1):33–41CrossRefPubMedPubMedCentralGoogle Scholar
  36. Crispo M, Mulet AP, Tesson L, Barrera N, Cuadro F, dos Santos-Neto PC, Nguyen TH, Crénéguy A, Brusselle L, Anegón I, Menchaca A (2015) Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS One 10:e0136690.  https://doi.org/10.1371/journal.pone.0136690 CrossRefPubMedPubMedCentralGoogle Scholar
  37. D'Agostino Y, D'Aniello S (2017) Molecular basis, applications and challenges of CRISPR/Cas9: a continuously evolving tool for genome editing. Brief Funct Genomics 16:211–216PubMedGoogle Scholar
  38. Damato EG, Winnen CW (2002) Cytomegalovirus infection: perinatal implications. J Obstet Gynecol Neonatal Nurs 31:86–92CrossRefPubMedGoogle Scholar
  39. Dandri M, Petersen J (2016) Mechanism of hepatitis B virus persistence in hepatocytes and its carcinogenic potential. Clin Infect Dis 62(suppl_4):S281–S288CrossRefPubMedPubMedCentralGoogle Scholar
  40. Darcis G, Das A, Berkhout B (2018) Tackling HIV persistence: pharmacological versus CRISPR-based shock strategies. Viruses 10(4):157CrossRefPubMedCentralGoogle Scholar
  41. Dash PK, Kaminski R, Bella R, Hang S, Mathews S, Ahooyi TM, Chen C, Mancuso P, Sariyer R, Ferrante P, Donadoni M, Robinson JA, Sillman B, Lin Z, Hilaire JR, Banoub M, Elango M, Gautam N, Mosely RL, Poluektova LY, McMillan J, Bade AN, Gorantla S, Sariyer IK, Burdo TH, Young WB, Amini S, Gordon J, Jacobson JM, Edagwa B, Khalili K, Gendelman HE (2019) Sequential LASER ART and CRISPR treatments eliminate HIV-1 in a subset of infected humanized mice. Nat Commun.  https://doi.org/10.2753//doi.org/10.1038/s41467-019-10366-y
  42. Datta PK, Kaminiski R, Hu W, Pirrone V, Sullivan NT, Nonnemacher MR, Dampier W, Wigdahl B, Khalili K (2016) HIV-1 latency and eradication: past, present and future. Curr HIV Res 14:431–441CrossRefPubMedPubMedCentralGoogle Scholar
  43. Doll JR, Thompson RL, Sawtell NM (2019) Infectious herpes simplex virus in the brain stem is correlated with reactivation in the trigeminal ganglia. J Virol 93(8):e02209–e02218CrossRefPubMedPubMedCentralGoogle Scholar
  44. Dong C, Qu L, Wang H, Wei L, Dong Y, Xiong S (2015) Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication. Antivir Res 118:110–117CrossRefPubMedGoogle Scholar
  45. Drew WL (1988) Diagnosis of cytomegalovirus infection. Rev Infect Dis 10(Supplement_3):S468–S476CrossRefPubMedGoogle Scholar
  46. Dufour, C., Claudel, A., Joubarne, N., Merindol, N., Maisonnet, T., Masroori, N., ... Berthoux, L. (2018). Editing of the human TRIM5 gene to introduce mutations with the potential to inhibit HIV-1. PLoS One 13(1):e0191709Google Scholar
  47. Ebina H, Misawa N, Kanemura Y, Koyanagi Y (2013) Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep 3:2510.  https://doi.org/10.1038/srep02510 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Epstein MA (1964) Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet 1:702–703CrossRefPubMedGoogle Scholar
  49. Findlay GM, Boyle EA, Hause RJ, Klein JC, Shendure J (2014) Saturation editing of genomic regions by multiplex homology-directed repair. Nature 513:120–123CrossRefPubMedPubMedCentralGoogle Scholar
  50. Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K, Pierson T, ... Quinn TC (1999) Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med 5(5): 512Google Scholar
  51. Fisicaro P, Valdatta C, Massari M, Loggi E, Biasini E, Sacchelli L, ... Ferrari C (2010). Antiviral intrahepatic T-cell responses can be restored by blocking programmed death-1 pathway in chronic hepatitis B. Gastroenterology 138(2): 682–693Google Scholar
  52. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826CrossRefPubMedPubMedCentralGoogle Scholar
  53. Gane EJ (2016) Future anti-HBV strategies. Liver Int 37:40–44CrossRefGoogle Scholar
  54. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of a•T to G•C in genomic DNA without DNA cleavage. Nature 551:464–471CrossRefPubMedPubMedCentralGoogle Scholar
  55. Gergen J, Coulon F, Creneguy A, Elain-Duret N, Gutierrez A, Pinkenburg O, Haspot F (2018) Multiplex CRISPR/Cas9 system impairs HCMV replication by excising an essential viral gene. PLoS One 13(2):e0192602CrossRefPubMedPubMedCentralGoogle Scholar
  56. Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC, Qi LS, Kampmann M, Weissman JS (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:647–661CrossRefPubMedPubMedCentralGoogle Scholar
  57. Gillison ML, Chaturvedi AK, Lowy DR (2008) HPV prophylactic vaccines and the potential prevention of noncervical cancers in both men and women. Cancer 113(S10):3036–3046CrossRefPubMedPubMedCentralGoogle Scholar
  58. Gravitt PE (2012) Suppl 2: evidence and impact of human papillomavirus latency. Open Virol J 6:198CrossRefPubMedPubMedCentralGoogle Scholar
  59. Green JC, Hu JS (2017) Editing plants for virus resistance using CRISPR-Cas. Acta Virol 61:138–142CrossRefPubMedGoogle Scholar
  60. Griffin BD (2010) Marieke C. Verweij, and Emmanuel JHJ Wiertz. "herpesviruses and immunity: the art of evasion.". Vet Microbiol 143(1):89–100CrossRefPubMedGoogle Scholar
  61. Harden ME, Munger K (2017) Human papillomavirus molecular biology. Mutat Res 2017:3–12.  https://doi.org/10.1016/j.mrrev.2016.07.002 CrossRefGoogle Scholar
  62. Herrera-Carrillo E, Berkhout B (2016) Attacking HIV-1 RNA versus DNA by sequence-specific approaches: RNAi versus CRISPR-Cas. Biochem Soc Trans 44:1355–1365CrossRefPubMedGoogle Scholar
  63. Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, Gersbach CA (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33:510–517CrossRefPubMedPubMedCentralGoogle Scholar
  64. Hirano H, Gootenberg JS, Horii T, Abudayyeh OO, Kimura M, Hsu PD, Nakane T, Ishitani R, Hatada I, Zhang F, Nishimasu H, Nureki O (2016) Structure and engineering of Francisella novicida Cas9. Cell 164:950–961CrossRefPubMedPubMedCentralGoogle Scholar
  65. Ho YK, Zhi H, Bowlin T, Dorjbal B, Philip S, Zahoor MA, Shih HM, Semmes OJ, Schaefer B, Glover JN, Giam CZ (2015) HTLV-1 tax stimulates ubiquitin E3 ligase, ring finger protein 8, to assemble lysine 63-linked polyubiquitin chains for TAK1 and IKK activation. PLoS Pathog 11:e1005102.  https://doi.org/10.1371/journal.ppat.1005102 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Hong M, Murai Y, Kutsuna T, Takahashi H, Nomoto K, Cheng CM, Tsuneyama K (2006) Suppression of Epstein-Barr nuclear antigen 1 (EBNA1) by RNA interference inhibits proliferation of EBV-positive Burkitt’s lymphoma cells. J Cancer Res Clin Oncol 132(1):1–8CrossRefPubMedGoogle Scholar
  67. Horii T, Arai Y, Yamazaki M, Morita S, Kimura M, Itoh M, Abe Y, Hatada I (2014) Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering. Sci Rep 4:4513.  https://doi.org/10.1038/srep04513 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Hou P, Chen S, Wang S, Yu X, Chen Y, Jiang M, Zhuang K, Ho W, Hou W, Huang J, Guo D (2015) Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection. Sci Rep 5:15577.  https://doi.org/10.1038/srep15577 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832CrossRefPubMedPubMedCentralGoogle Scholar
  70. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278CrossRefPubMedPubMedCentralGoogle Scholar
  71. Hu W, Kaminski R, Yang F, Zhang Y, Cosentino L, Li F, Luo B, Alvarez-Carbonell D, Garcia-Mesa Y, Karn J, Mo X, Khalili K (2014a) RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci U S A 111:11461–11466CrossRefPubMedPubMedCentralGoogle Scholar
  72. Hu Z, Yu L, Zhu D, Ding W, Wang X, Zhang C, Wang L, Jiang X, Shen H, He D, Li K, Xi L, Ma D, Wang H (2014b) Disruption of HPV16 E7 by crispr/cas system induces apoptosis and growth inhibition in HPV 16 positive human cervical cancer cells. Biomed Res Int 2014:612823.  https://doi.org/10.1155/2014/612823 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Hung SS, Chrysostomou V, Li F, Lim JK, Wang JH, Powell JE, Tu L, Daniszewski M, Lo C, Wong RC, Crowston JG, Pébay A, King AE, Bui BV, Liu GS, Hewitt AW (2016) AAV-mediated CRISPR/Cas gene editing of retinal cells in vivo. Invest Ophthalmol Vis Sci 57:3470–3476CrossRefPubMedGoogle Scholar
  74. Ian MX, Lan SZ, Cheng ZF, Dan H, Qiong LH (2008) Suppression of EBNA1 expression inhibits growth of EBV positive NK/T cell lymphomas cells. Cancer Biol Ther 7(10):1602–1606CrossRefPubMedGoogle Scholar
  75. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169(12):5429–5433CrossRefPubMedPubMedCentralGoogle Scholar
  76. Itzhaki RF (2018) Corroboration of a major role for herpes simplex virus type 1 in Alzheimer's disease. Front Aging Neurosci 10:324CrossRefPubMedPubMedCentralGoogle Scholar
  77. Jiang C, Mei M, Li B, Zhu X, Zu W, Tian Y, Wang Q, Guo Y, Dong Y, Tan X (2017) A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo. Cell Res 27:440–443CrossRefPubMedPubMedCentralGoogle Scholar
  78. Kaminski R, Bella R, Yin C, Otte J, Ferrante P, Gendelman HE, Li H, Booze R, Gordon J, Hu W, Khalili K (2016a) Excision of HIV-1 DNA by gene editing: a proof-of-concept in vivo study. Gene Ther 23:696.  https://doi.org/10.1038/gt.2016.45 CrossRefPubMedGoogle Scholar
  79. Kaminski R, Chen Y, Fischer T, Tedaldi E, Napoli A, Zhang Y, Karn J, Hu W, Khalili K (2016b) Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing. Sci Rep 6:22555.  https://doi.org/10.1038/srep22555 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Kanda T, Furuse Y, Oshitani H, Kiyono (2016) Highly efficient crispr/cas-mediated cloning and functional characterization of gastric cancer-derived epstein-barr virus strains. J Virol 90:4383–4393Google Scholar
  81. Kang H, Minder P, Park MA, Mesquitta WT, Torbett BE, Slukvin II (2015) CCR5 disruption in induced pluripotent stem cells using CRISPR/Cas9 provides selective resistance of immune cells to CCR5-tropic HIV-1 virus. Mol Ther Nucleic Acids 4:e268.  https://doi.org/10.1038/mtna.2015.42 CrossRefPubMedGoogle Scholar
  82. Karimova M, Beschorner N, Dammermann W, Chemnitz J, Indenbirken D, Bockmann JH, Grundhoff A, Lüth S, Buchholz F, Schulze zur Wiesch J, Hauber J (2015) CRISPR/Cas9 nickase-mediated disruption of hepatitis B virus open reading frame S and X. Sci Rep 5:13734.  https://doi.org/10.1038/srep13734 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Kaushik A, Yndart A, Atluri V, Tiwari S, Tomitaka A, Gupta P, Jayant RD, Alvarez-Carbonell D, Khalili K, Nair M (2019) Magnetically guided non-invasive CRISPR-Cas9/gRNA delivery across blood-brain barrier to eradicate latent HIV-1 infection. Sci Rep 9:3928.  https://doi.org/10.1038/s41598-019-40222-4 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Kennedy EM, Cullen BR (2015) Bacterial CRISPR/Cas DNA endonucleases: a revolutionary technology that could dramatically impact viral research and treatment. Virology 479-480:213–220CrossRefPubMedGoogle Scholar
  85. Kennedy EM, Cullen BR (2017) Gene editing: a new tool for viral disease. Annu Rev Med 68:401–411CrossRefPubMedGoogle Scholar
  86. Kennedy EM, Bassit LC, Mueller H, Kornepati AVR, Bogerd HP, Nie T, Chatterjee P, Javanbakht H, Schinazi RF, Cullen BR (2015) Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease. Virology 476:196–205CrossRefPubMedGoogle Scholar
  87. Kim D, Kim S, Kim S, Park J, Kim JS (2016) Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq. Genome Res 26:406–415CrossRefPubMedPubMedCentralGoogle Scholar
  88. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016) High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–495CrossRefPubMedPubMedCentralGoogle Scholar
  89. Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, Nureki O, Zhang F (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517:583–588CrossRefPubMedGoogle Scholar
  90. Lao YH, Li M, Gao MA, Shao D, Chi CW, Huang D, Chakraborty S, Ho TC, Jiang W, Wang HX, Wang S, Leong KW (2018) HPV oncogene manipulation using nonvirally delivered crispr/cas9 or Natronobacterium Gregoryi Argonaute. Adv Sci (Weinh) 5:1700540.  https://doi.org/10.1002/advs.201700540 CrossRefGoogle Scholar
  91. Le Rhun A, Escalera-Maurer A, Bratovič M, Charpentier E (2019) CRISPR-Cas in Streptococcus Pyogenes. RNA Biol 16:380–389CrossRefPubMedPubMedCentralGoogle Scholar
  92. Lebbink RJ, De Jong DC, Wolters F, Kruse EM, Van Ham PM, Wiertz EJ, Nijhuis M (2017) A combinational CRISPR/Cas9 gene-editing approach can halt HIV replication and prevent viral escape. Sci Rep 7:41968.  https://doi.org/10.1038/srep41968 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Lee C (2019) CRISPR/Cas9-based antiviral strategy: current status and the potential challenge. Molecules 24(7):1349CrossRefPubMedCentralGoogle Scholar
  94. Lee MH, Chiou JF, Yen KY, Yang LL (2000) EBV DNA polymerase inhibition of tannins from Eugenia uniflora. Cancer Lett 154(2):131–136CrossRefPubMedGoogle Scholar
  95. Lee S, Loecher M, Iyer R (2018) Immunomodulation in hepatocellular cancer. J Gastrointest Oncol 9(1):208CrossRefPubMedPubMedCentralGoogle Scholar
  96. Li C, Guan X, Du T, Jin W, Wu B, Liu Y, Wang P, Hu B, Griffin GE, Shattock RJ, Hu Q (2015) Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. J Gen Virol 96:2381–2393CrossRefPubMedGoogle Scholar
  97. Li H, Sheng C, Wang S, Yang L, Liang Y, Huang Y, Liu H, Li P, Yang C, Yang X, Jia L, Xie J, Wang L, Hao R, Du X, Xu D, Zhou J, Li M, Sun Y, Tong Y, Li Q, Qiu S, Song H (2017) Removal of integrated hepatitis B virus DNA using CRISPR-Cas9. Front Cell Infect Microbiol 7:91.  https://doi.org/10.3389/fcimb.2017.00091 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Liao HK, Gu Y, Diaz A, Marlett J, Takahashi Y, Li M, Suzuki K, Xu R, Hishida T, Chang CJ, Esteban CR, Young J, Izpisua Belmonte JC (2015) Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat Commun 6:6413.  https://doi.org/10.1038/ncomms7413 CrossRefPubMedGoogle Scholar
  99. Lin SR, Yang HC, Kuo YT, Liu CJ, Yang TY, Sung KC, Lin YY, Wang HY, Wang CC, Shen YC, Wu FY, Kao JH, Chen DS, Chen PJ (2014) The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Mol Ther Nucleic Acids 3:e186.  https://doi.org/10.1038/mtna.2014.38 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Lin C, Li H, Hao M, Xiong D, Luo Y, Huang C, Yuan Q, Zhang J, Xia N (2016) Increasing the efficiency of crispr/cas9 –mediated precise genome editing of HSV-1 virus in human cels. Sci Rep 6:34531.  https://doi.org/10.1038/srep34531 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Lino CA, Harper JC, Carney JP, Timlin JA (2018) Delivering CRISPR: a review of the challenges and approaches. Drug Deliv 25:1234–1257CrossRefPubMedPubMedCentralGoogle Scholar
  102. Liu C, Zhang L, Liu H, Cheng K (2017) Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release 266:17–26CrossRefPubMedPubMedCentralGoogle Scholar
  103. Liu Y, Zhao M, Gong M, Xu Y, Xie C, Deng H, Li X, Wu H, Wang Z (2018) Inhibition of hepatitis B virus replication via HBV DNA cleavage by Cas9 from Staphylococcus aureus. Antivir Res 152:58–67CrossRefPubMedGoogle Scholar
  104. Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, Bhattacharyya S, Shelton JM, Bassel-Duby R, Olson EN (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351:400–403CrossRefPubMedGoogle Scholar
  105. Lopatin U (2019) Drugs in the pipeline for HBV. Clin Liver Dis 23(2019):535–555CrossRefPubMedGoogle Scholar
  106. Maartens G, Celum C, Lewin SR (2014) HIV infection: epidemiology, pathogenesis, treatment, and prevention. Lancet 384(9939):258–271CrossRefPubMedGoogle Scholar
  107. Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA, Han YC, Ogrodowski P, Crippa A, Rekhtman N, De Stanchina E, Lowe SW, Ventura A (2014) In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516:423–427CrossRefPubMedPubMedCentralGoogle Scholar
  108. Maggio I, Stefanucci L, Janssen JM, Liu J, Chen X, Mouly V, Gonçalves MA (2016) Selection-free gene repair after adenoviral vector transduction of designer nucleases: rescue of dystrophin synthesis in DMD muscle cell populations. Nucleic Acids Res 44:1449–1470CrossRefPubMedPubMedCentralGoogle Scholar
  109. Maglennon GA, McIntosh P, Doorbar J (2011) Persistence of viral DNA in the epithelial basal layer suggests a model for papillomavirus latency following immune regression. Virology 414(2):153–163CrossRefPubMedPubMedCentralGoogle Scholar
  110. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31:833–838CrossRefPubMedPubMedCentralGoogle Scholar
  111. Manglani M, McGavern DB (2018) New advances in CNS immunity against viral infection. Curr Opin Virol 28:116–126CrossRefPubMedGoogle Scholar
  112. Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL (2015) Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 34:210.  https://doi.org/10.1038/nbt0216-210c CrossRefGoogle Scholar
  113. Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, Watanabe T, Kanai T, Sato T (2015) Modeling colorectal cancer using CRISPR-Cas9–mediated engineering of human intestinal organoids. Nat Med 21:256–262CrossRefPubMedGoogle Scholar
  114. Mefferd AL, Bogerd HP, Irwan ID, Cullen BR (2018) Insights into the mechanisms underlying the inactivation of HIV-1 proviruses by CRISPR/Cas. Virology 520:116–126CrossRefPubMedPubMedCentralGoogle Scholar
  115. Mojica FJ (2000) Biological significance of a family of regularly spaced repeats in the genomes of archaea, Bacteria and mitochondria. Mol Microbiol 36(1):244–246CrossRefPubMedGoogle Scholar
  116. Mojica FJ, Díez-Villaseñor C, García-Martínez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182CrossRefPubMedGoogle Scholar
  117. Nath A, Tyler KL (2013) Novel approaches and challenges to treatment of central nervous system viral infections. Ann Neurol 74:412–422CrossRefPubMedPubMedCentralGoogle Scholar
  118. Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM, Madhavan S, Pan X, Ran FA, Yan WX, Asokan A, Zhang F, Duan D, Gersbach CA (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351:403–407CrossRefPubMedGoogle Scholar
  119. Nicoll MP, Proença JT, Efstathiou S (2012) The molecular basis of herpes simplex virus latency. FEMS Microbiol Rev 36(3):684–705CrossRefPubMedPubMedCentralGoogle Scholar
  120. O'Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA (2014) Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 516:263–266CrossRefPubMedPubMedCentralGoogle Scholar
  121. Panfil AR, London JA, Green PL, Yoder KE (2018) CRISPR/Cas9 genome editing to disable the latent HIV-1 provirus. Front Microbiol 9:3107.  https://doi.org/10.3389/fmicb.2018.03107 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Pebody RG, Andrews N, Brown D, Gopal R, De Melker H, François G, ... Kojouharova M (2004). The seroepidemiology of herpes simplex virus type 1 and 2 in Europe. Sex Transm Infect 80(3): 185–191Google Scholar
  123. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M, Graham DB, Jhunjhunwala S, Heidenreich M, Xavier RJ, Langer R, Anderson DG, Hacohen N, Regev A, Feng G, Sharp PA, Zhang F (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159:440–455CrossRefPubMedPubMedCentralGoogle Scholar
  124. Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151:653–663CrossRefPubMedGoogle Scholar
  125. Price AA, Sampson TR, Ratner HK, Grakoui A, Weiss DS (2015) Cas9-mediated targeting of viral RNA in eukaryotic cells. Proc Natl Acad Sci U S A 112:6164–6169CrossRefPubMedPubMedCentralGoogle Scholar
  126. Qin W, Dion SL, Kutny PM, Zhang Y, Cheng AW, Jillette NL, Malhotra A, Geurts AM, Chen YG, Wang H (2015) Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease. Genetics 200:423–430CrossRefPubMedPubMedCentralGoogle Scholar
  127. Raab-Traub N (2012) Novel mechanisms of EBV-induced oncogenesis. Curr Opin Virol 2:453–458CrossRefPubMedPubMedCentralGoogle Scholar
  128. Raveux A, Vandormael-Pournin S, Cohen-Tannoudji M (2017) Optimization of the production of knock-in alleles by CRISPR/Cas9 microinjection into the mouse zygote. Sci Rep 7:42661.  https://doi.org/10.1038/srep42661 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Reeves MB, Lehner PJ, Sissons JGP, Sinclair JH (2005) An in vitro model for the regulation of human cytomegalovirus latency and reactivation in dendritic cells by chromatin remodelling. J Gen Virol 86(11):2949–2954CrossRefPubMedGoogle Scholar
  130. Revello MG, Zavattoni M, Furione M, Fabbri E, Gerna G (2006) Preconceptional primary human cytomegalovirus infection and risk of congenital infection. J Infect Dis 193:783–787CrossRefPubMedGoogle Scholar
  131. Roehm PC, Shekarabi M, Wollebo HS, Bellizzi A, He L, Salkind J, Khalili K (2016) Inhibition of HSV-1 replication by gene editing strategy. Sci Rep 6:23146.  https://doi.org/10.1038/srep23146 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Romero JR, Newland JG (2003) Viral meningitis and encephalitis: traditional and emerging viral agents. Semin Pediatr Infect Dis 14:72–82CrossRefPubMedGoogle Scholar
  133. Rubin RH (1990) Impact of cytomegalovirus infection on organ transplant recipients. Rev Infect Dis 12(Supplement_7):S754–S766CrossRefPubMedGoogle Scholar
  134. Russell TA, Stefanovic T, Tscharke DC (2015) Engineering herpes simplex viruses by infection–transfection methods including recombination site targeting by CRISPR/Cas9 nucleases. J Virol Methods 213:18–25CrossRefPubMedGoogle Scholar
  135. Sakuma T, Nishikawa A, Kume S, Chayama K, Yamamoto T (2014) Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. Sci Rep 4:5400.  https://doi.org/10.1038/srep05400 CrossRefPubMedPubMedCentralGoogle Scholar
  136. Sakuma T, Masaki K, Abe-Chayama H, Mochida K, Yamamoto T, Chayama K (2016) Highly multiplexed CRISPR-Cas9-nuclease and Cas9-nickase vectors for inactivation of hepatitis B virus. Genes Cells 21:1253–1262CrossRefPubMedGoogle Scholar
  137. Sanders VJ, Waddell AE, Felisan SL, Li X, Conrad AJ, Tourtellotte WW (1996) Herpes simplex virus in postmortem multiple sclerosis brain tissue. Arch Neurol 53(2):125–133CrossRefPubMedGoogle Scholar
  138. Sanders VJ, Felisan SL, Waddell AE, Conrad AJ, Schmid P, Swartz BE ... Tourtellotte WW (1997) Presence of herpes simplex DNA in surgical tissue from human epileptic seizure foci detected by polymerase chain reaction: preliminary study. Arch Neurol 54(8) 954–960Google Scholar
  139. Satou Y, Miyazato P, Ishihara K, Yaguchi H, Melamed A, Miura M, Fukuda A, Nosaka K, Watanabe T, Rowan AG, Nakao M, Bangham CR (2016) The retrovirus HTLV-1 inserts an ectopic CTCF-binding site into the human genome. Proc Natl Acad Sci U S A 113:3054–3059CrossRefPubMedPubMedCentralGoogle Scholar
  140. Savic N, Ringnalda FC, Lindsay H, Berk C, Bargsten K, Li Y ... Jinek M (2018) Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair. Elife 7: e33761Google Scholar
  141. Sawtell NM (1997) Comprehensive quantification of herpes simplex virus latency at the single-cell level. J Virol 71(7):5423–5431PubMedPubMedCentralGoogle Scholar
  142. Seeger C, Sohn JA (2014) Targeting hepatitis B virus with CRISPR/Cas9. Mol Ther-Nucleic Acids 3:e216CrossRefPubMedPubMedCentralGoogle Scholar
  143. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, Heckl D, Ebert BL, Root DE, Doench JG, Zhang F (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87CrossRefPubMedGoogle Scholar
  144. Shan L, Deng K, Shroff NS, Durand CM, Rabi SA, Yang HC ... Siliciano RF (2012) Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. Immunity 36(3): 491–501Google Scholar
  145. Singh P, Schimenti JC, Bolcun-Filas E (2015) A mouse geneticist’s practical guide to CRISPR applications. Genetics 199:1–15CrossRefPubMedPubMedCentralGoogle Scholar
  146. Sinzger C, Digel M, Jahn G (2008) Cytomegalovirus cell tropism. Curr Top Microbiol Immunol 325:63–83.  https://doi.org/10.1007/978-3-540-77349.8_4 CrossRefPubMedGoogle Scholar
  147. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88CrossRefPubMedPubMedCentralGoogle Scholar
  148. Song J, Zhang X, Ge Q, Yuan C, Chu L, Liang HF, Liao Z, Liu Q, Zhang Z, Zhang B (2018) CRISPR/Cas9- mediated knockout of HBsAg inhibit proliferation and and tumorigenicity of HBV-positive hepatocellular carcinoma cells. J Cell Biochem 119:8419–8431CrossRefPubMedPubMedCentralGoogle Scholar
  149. Soppe JA, Lebbink RJ (2017) Antiviral goes viral: harnessing CRISPR/Cas9 to combat viruses in humans. Trends Microbiol 25:833–850CrossRefPubMedGoogle Scholar
  150. Srivastava M, Nambiar M, Sharma S, Karki SS, Goldsmith G, Hegde M, Kumar S, Pandey M, Singh RK, Ray P, Natarajan R, Kelkar M, De A, Choudhary B, Raghavan SC (2012) An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell 151:1474–1487CrossRefPubMedGoogle Scholar
  151. Stern L, Withers B, Avdic S, Gottlieb D, Abendroth A, Blyth E, Slobedman B (2019) Human Cytomegalovirus latency and reactivation in allogeneic hematopoietic stem cell transplant recipients. Front Microbiol.  https://doi.org/10.3389/fmicb.2019.01186
  152. Strecker J, Ladha A, Gardner Z, Schmid-Burgk JL, Makarova KS, Koonin EV, Zhang F (2019) RNA-guided DNA insertion with CRISPR-associated transposases. Science.  https://doi.org/10.1126/science.aax9181
  153. Strutt SC, Torrez RM, Kaya E, Negrete OA, Doudna JA (2018) RNA-dependent RNA targeting by CRISPR-Cas9. Elife 7pii:e32724.  https://doi.org/10.7554/eLife.32724 CrossRefGoogle Scholar
  154. Swiech L, Heidenreich M, Banerjee A, Habib N, Li Y, Trombetta J, Sur M, Zhang F (2015) In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33:102–106CrossRefPubMedGoogle Scholar
  155. Tabebordbar M, Zhu K, Cheng JKW, Chew WL, Widrick JJ, Yan WX, Maesner C, Wu EY, Xiao R, Ran FA, Cong L, Zhang F, Vandenberghe LH, Church GM, Wagers AJ (2016) In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351:407–411CrossRefPubMedGoogle Scholar
  156. Tang L, Zhao Q, Wu S, Cheng J, Chang J, Guo JT (2017) The current status and future directions of hepatitis B antiviral drug discovery. Expert Opin Drug Discovery 12(1):5–15CrossRefGoogle Scholar
  157. Tavazzi E, White MK, Khalili K (2012) Progressive multifocal leukoencephalopathy: clinical and molecular aspects. Rev Med Virol 22:18–32CrossRefPubMedGoogle Scholar
  158. Thompson RL, Sawtell NM (2010) Therapeutic implications of new insights into the critical role of VP16 in initiating the earliest stages of HSV reactivation from latency. Future Med Chem 2(7):1099–1105CrossRefPubMedPubMedCentralGoogle Scholar
  159. Thompson S, Messick T, Schultz DC, Reichman M, Lieberman PM (2010) Development of a high-throughput screen for inhibitors of Epstein-Barr virus EBNA1. J Biomol Screen 15(9):1107–1115CrossRefPubMedPubMedCentralGoogle Scholar
  160. Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP, Aryee MJ, Joung JK (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33:187–197CrossRefPubMedGoogle Scholar
  161. Ueda S, Ebina H, Kanemura Y, Misawa N, Koyanagi Y (2016) Anti-HIV-1 potency of the CRISPR/Cas9 system insufficient to fully inhibit viral replication. Microbiol Immunol 60:483–496CrossRefPubMedGoogle Scholar
  162. van Diemen FR, Kruse EM, Hooykaas MJ, Bruggeling CE, Schürch AC, van Ham PM, Imhof SM, Nijhuis M, Wiertz EJ, Lebbink RJ (2016) Crispr/cas9-mediated genome editing of herpesviruses limits productive and latent infections. PLoS Pathog 12:e1005701.  https://doi.org/10.1371/journal.ppat.1005701 CrossRefPubMedPubMedCentralGoogle Scholar
  163. Voets O, Tielen F, Elstak E, Benschop J, Grimbergen M, Stallen J, Janssen R, van Marle A, Essrich C (2017) Highly efficient gene inactivation by adenoviral CRISPR/Cas9 in human primary cells. PLoS One 12:e0182974.  https://doi.org/10.1371/journal.pone.0182974 CrossRefPubMedPubMedCentralGoogle Scholar
  164. Vora S, Tuttle M, Cheng J, Church G (2016) Next stop for the CRISPR revolution: RNA-guided epigenetic regulators. FEBS J 283:3181–3193CrossRefPubMedGoogle Scholar
  165. Wald A, Corey L (2007) Persistence in the population: epidemiology, transmission. In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K (eds) Human herpesviruses: biology, therapy, and Immunoprophylaxis. Cambridge University Press, Cambridge Chapter 36Google Scholar
  166. Wang J, Quake SR (2014) Rna-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection. Proc Natl Acad Sci U S A 111:13157–13162CrossRefPubMedPubMedCentralGoogle Scholar
  167. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918CrossRefPubMedPubMedCentralGoogle Scholar
  168. Wang W, Ye C, Liu J, Zhang D, Kimata JT, Zhou P (2014) CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection. PLoS One 9:e115987.  https://doi.org/10.1371/journal.pone.0115987 CrossRefPubMedPubMedCentralGoogle Scholar
  169. Wang G, Zhao N, Berkhout B, Das AT (2016a) A combinatorial CRISPR Cas9 attack on HIV-1 DNA extinguishes all infectious provirus in infected T cell cultures. Cell Rep 17:2819–2826CrossRefPubMedGoogle Scholar
  170. Wang G, Zhao N, Berkhout B, Das AT (2016b) CRISPR-Cas9 can inhibit HIV-1 replication but NHEJ repair facilitates virus escape. Mol Ther 24:522–526CrossRefPubMedPubMedCentralGoogle Scholar
  171. Wang M, Zuris JA, Meng F, Rees H, Sun S, Deng P, Han Y, Gao X, Pouli D, Wu Q, Georgakoudi I, Liu DR, Xu Q (2016c) Efficient delivery of genome editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci U S A 113:2868–2873CrossRefPubMedPubMedCentralGoogle Scholar
  172. Wang G, Zhao N, Berkhout B, Das AT (2018a) CRISPR-Cas based antiviral strategies against HIV-1. Virus Res 244:321–332CrossRefPubMedGoogle Scholar
  173. Wang Y, Liu KI, Sutrisnoh NB, Srinivasan H, Zhang J, Li J, Zhang F, Lalith CRJ, Xing H, Shanmugam R, Foo JN, Yeo HT, Ooi KH, Bleckwehl T, Par YYR, Lee SM, Ismail NNB, Sanwari NAB, Lee STV, Lew J, Tan MH (2018b) Systematic evaluation of CRISPR-Cas systems reveals design principles for genome editing in human cells. Genome Biol 19:62.  https://doi.org/10.1186/s13059-018-1445-x CrossRefPubMedPubMedCentralGoogle Scholar
  174. Wen Y, Bar KJ, Li JZ (2018) Lessons learned from HIV antiretroviral treatment interruption trials. Curr Opin HIV AIDS 13:416–421CrossRefPubMedGoogle Scholar
  175. White MK, Khalili K (2011) Pathogenesis of progressive multifocal leukoencephalopathy—revisited. J Infect Dis 203(5):578–586CrossRefPubMedPubMedCentralGoogle Scholar
  176. White MK, Gordon J, Khalili K (2013) The rapidly expanding family of human polyomaviruses: recent developments in understanding their life cycle and role in human pathology. PLoS Pathog 9(3):e1003206CrossRefPubMedPubMedCentralGoogle Scholar
  177. White MK, Kaminski R, Wollebo H, Hu W, Malcolm T, Khalili K (2016) Gene editing for treatment of neurological infections. Neurotherapeutics 13:547–554CrossRefPubMedPubMedCentralGoogle Scholar
  178. Whitehurst CB, Sanders MK, Law M, Wang FZ, Xiong J, Dittmer DP, Pagano JS (2013) Maribavir inhibits Epstein-Barr virus transcription through the EBV protein kinase. J Virol 87(9):5311–5315CrossRefPubMedPubMedCentralGoogle Scholar
  179. Whitley RJ, Roizman B (2001) Herpes simplex virus infections. Lancet 357:1513–1518CrossRefPubMedGoogle Scholar
  180. Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482(7385):331CrossRefPubMedGoogle Scholar
  181. Wightman F, Solomon A, Khoury G, Green JA, Gray L, Gorry PR ... Cameron PU (2010). Both CD31+ and CD31-naive CD4+ T cells are persistent HIV type 1-infected reservoirs in individuals receiving antiretroviral therapy. J Infect Dis 202(11): 1738–1748Google Scholar
  182. Wollebo HS, Bellizzi A, Kaminiski R, Hu W, White MK, Khalili K (2015a) Crisper/Cas9 system as an agent for eliminating polyomavirus JC infection. PLoS One 10(9):e0136046.  https://doi.org/10.1371/journal.pone.0136046 CrossRefPubMedPubMedCentralGoogle Scholar
  183. Wollebo HS, White MK, Gordon J, Berger JR, Khalili K (2015b) Persistence and pathogenesis of the neurotropic polyomavirus JC. Ann Neurol 77:560–570CrossRefPubMedPubMedCentralGoogle Scholar
  184. Wu X, Kriz AJ, Sharp PA (2014) Target specificity of the CRISPR-Cas9 system. Quant Biol 2:59–70CrossRefPubMedPubMedCentralGoogle Scholar
  185. Xu F, Schillinger JA, Sternberg MR, Johnson RE, Lee FK, Nahmias AJ, Markowitz LE (2002) Seroprevalence and coinfection with herpes simplex virus type 1 and type 2 in the United States, 1988–1994. J Infect Dis 185(8):1019–1024CrossRefPubMedGoogle Scholar
  186. Xu X, Fan S, Zhou J, Zhang Y, Che Y, Cai H, Wang L, Guo L, Liu L, Li Q (2016) The mutated tegument protein U17 attenuates the virulence of herpes simplex virus 1 by reducing the modulation of alpha-4 gene transcription. Virol J 13:152.  https://doi.org/10.1186/s12985-016-0600-9 CrossRefPubMedPubMedCentralGoogle Scholar
  187. Yamano T, Nishimasu H, Zetsche B, Hirano H, Slaymaker IM, Li Y, Fedorova I, Nakane T, Makarova KS, Koonin EV, Ishitani R, Zhang F, Nureki O (2016) Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165:949–962CrossRefPubMedPubMedCentralGoogle Scholar
  188. Yan WX, Hunnewell P, Alfonse LE, Carte JM, Keston-Smith E, Sothiselvam S, Garrity AJ, Chong S, Makarova KS, Koonin EV, Cheng DR, Scott DA (2019) Functionally diverse type V CRISPR-Cas systems. Science 363:88–91CrossRefPubMedGoogle Scholar
  189. Yang HC, Chen PJ (2018) The potential and challenges of CRISPR-Cas9 in eradication of hepatisis B virus covalently closed circular DNA. Virus Res 244:304–310CrossRefPubMedGoogle Scholar
  190. Yao S, He Z, Chen C (2015) CRISPR/Cas9-mediated genome editing of epigenetic factors for cancer therapy. Hum Gene Ther 26:463–471CrossRefPubMedGoogle Scholar
  191. Yin H, Song CQ, Dorkin JR, Zhu LJ, Li Y, Wu Q, Park A, Yang J, Suresh S, Bizhanova A, Gupta A, Bolukbasi MF, Walsh S, Bogorad RL, Gao G, Weng Z, Dong Y, Koteliansky V, Wolfe SA, Langer R, Xue W, Anderson DG (2016) Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol 34:328–333CrossRefPubMedPubMedCentralGoogle Scholar
  192. Yin C, Zhang T, Qu X, Zhang Y, Putatunda R, Xiao X et al (2017) In vivo excision of HIV-1 provirus by saCas9 and multiplex single-guide RNAs in animal models. Mol Ther 25(5):1168–1186CrossRefPubMedPubMedCentralGoogle Scholar
  193. Yoder KE, Bundschuh R (2016) Host double strand break repair generates HIV-1 strains resistant to CRISPR/Cas9. Sci Rep 6:29530.  https://doi.org/10.1038/srep29530 CrossRefPubMedPubMedCentralGoogle Scholar
  194. Yoshiba T, Saga Y, Urabe M, Uchibori R, Matsubara S, Fujiwara H, Mizukami H (2019) CRISPR/Cas9-mediated cervical cancer treatment targeting human papillomavirus E6. Oncol Lett 17:2197–2206PubMedGoogle Scholar
  195. Yuen KS, Chan CP, Kok KH, Jin DY (2017) Mutagenesis and genome engineering of Epstein–Barr virus in cultured human cells by CRISPR/Cas9. Methods Mol Biol 1498:23–31CrossRefPubMedGoogle Scholar
  196. Yuen KS, Wang ZM, Wong NHM, Zhang ZQ, Cheng TF, Lui WY et al (2018a) Suppression of Epstein-Barr virus DNA load in latently infected nasopharyngeal carcinoma cells by CRISPR/Cas9. Virus Res 244:296–303CrossRefPubMedGoogle Scholar
  197. Yuen KS, Wang ZM, Wong NM, Zhang ZQ, Cheng TF, Lui WY, Chan CP, Jin DY (2018b) Suppression of Epstein-Barr virus DNA load in latently infected nasopharyngeal carcinoma cells by CRISPR/Cas9. Virus Res 244:296–303CrossRefPubMedGoogle Scholar
  198. Zaidi SS, Tashkandi M, Mansoor S, Mahfouz MM (2016) Engineering plant immunity: using CRISPR/Cas9 to generate virus resistance. Front Plant Sci 7:1673.  https://doi.org/10.3389/fpls.2016.01673 CrossRefPubMedPubMedCentralGoogle Scholar
  199. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771CrossRefPubMedPubMedCentralGoogle Scholar
  200. Zhang Y, Yin C, Zhang T, Li F, Yang W, Kaminski R, Hu W (2015) CRISPR/gRNA-directed synergistic activation mediator (SAM) induces specific, persistent and robust reactivation of the HIV-1 latent reservoirs. Sci Rep 5:16277CrossRefPubMedPubMedCentralGoogle Scholar
  201. Zhang D, Li Z, Li JF (2016) Targeted gene manipulation in plants using the CRISPR/Cas technology. J Genet Genomics 43:251–262CrossRefPubMedGoogle Scholar
  202. Zhen S, Li X (2017) Oncogenic human papillomavirus: application of CRISPR/Cas9 therapeutic strategies for cervical cancer. Cell Physiol Biochem 44:2455–2466CrossRefPubMedGoogle Scholar
  203. Zhen S, Hua L, Liu YH, Gao LC, Fu J, Wan DY, Dong LH, Song HF, Gao X (2015) Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Gene Ther 22:404–412CrossRefPubMedGoogle Scholar
  204. Zhen S, Lu JJ, Wang LJ, Sun XM, Zhang JQ, Li X, Luo WJ, Zhao L (2016) In vitro and in vivo synergistic therapeutic effect of cisplatin with human papillomavirus 16 E6/E7 CRISPR/Cas9 on cervical Cancer cell line. Transl Oncol 9:498–504CrossRefPubMedPubMedCentralGoogle Scholar
  205. Zhu W, Lei R, Le Duff Y, Li J, Guo F, Wainberg MA, Liang C (2015) The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA. Retrovirology 12:22.  https://doi.org/10.1186/s12977-015-0150-z CrossRefPubMedPubMedCentralGoogle Scholar
  206. Zhu D, Pan C, Sheng J, Liang H, Bian Z, Liu Y (2018) Human cytomegalovirus reprograms haematopoietic progenitor cells into immunosuppressive monocytes to achieve latency. Nat Microbiol 3:503–513.  https://doi.org/10.1038/s41564-018-0131-9 CrossRefPubMedPubMedCentralGoogle Scholar
  207. Zuckermann M, Hovestadt V, Knobbe-Thomsen CB, Zapatka M, Northcott PA, Schramm K, Belic J, Jones DT, Tschida B, Moriarity B, Largaespada D, Roussel MF, Korshunov A, Reifenberger G, Pfister SM, Lichter P, Kawauchi D, Gronych J (2015) Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nat Commun 6:7391.  https://doi.org/10.1038/ncomms8391 CrossRefPubMedPubMedCentralGoogle Scholar
  208. Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, Maeder ML, Joung JK, Chen ZY, Liu DR (2015) Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol 33:73–80CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Anna Bellizzi
    • 1
  • Nicholas Ahye
    • 1
  • Gauthami Jalagadugula
    • 1
  • Hassen S. Wollebo
    • 1
    Email author
  1. 1.Center for Neurovirology, Department of NeuroscienceLewis Katz School of Medicine at Temple UniversityPhiladelphiaUSA

Personalised recommendations