Advertisement

Journal of Neuroimmune Pharmacology

, Volume 14, Issue 4, pp 649–660 | Cite as

Host-Immune Interactions in JC Virus Reactivation and Development of Progressive Multifocal Leukoencephalopathy (PML)

  • Amir Khalili
  • Michael Craigie
  • Martina Donadoni
  • Ilker Kudret SariyerEmail author
INVITED REVIEW
  • 213 Downloads

Abstract

With the advent of immunomodulatory therapies and the HIV epidemic, the impact of JC Virus (JCV) on the public health system has grown significantly due to the increased incidence of Progressive Multifocal Leukoencephalopathy (PML). Currently, there are no pharmaceutical agents targeting JCV infection for the treatment and the prevention of viral reactivation leading to the development of PML. As JCV primarily reactivates in immunocompromised patients, it is proposed that the immune system (mainly the cellular-immunity component) plays a key role in the regulation of JCV to prevent productive infection and PML development. However, the exact mechanism of JCV immune regulation and reactivation is not well understood. Likewise, the impact of host factors on JCV regulation and reactivation is another understudied area. Here we discuss the current literature on host factor-mediated and immune factor-mediated regulation of JCV gene expression with the purpose of developing a model of the factors that are bypassed during JCV reactivation, and thus are potential targets for the development of therapeutic interventions to suppress PML initiation.

Graphical Abstract

Keywords

JC virus PML Immunosuppression Reactivation Diagnosis Therapy 

Notes

Funding

This work was made possible by grants awarded by NIH to IKS (AI101192).

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Al-Tawfiq JA, Banda RW, Daabil RA, Dawamneh MF (2015) Progressive multifocal leukoencephalopathy (PML) in a patient with lymphoma treated with rituximab: A case report and literature review. J Infect Public Health 8(5):493–497PubMedGoogle Scholar
  2. Amemiya K, Traub R, Durham L, Major EO (1992) Adjacent nuclear factor-1 and activator protein binding sites in the enhancer of the neurotropic JC virus. A common characteristic of many brain-specific genes J Biol Chem 267:14204–14211PubMedGoogle Scholar
  3. Amirhaeri S, Wohlrab F, Major EO, Wells RD (1988) Unusual DNA structure in the regulatory region of the human papovavirus JC virus. J Virol 62:922–931PubMedPubMedCentralGoogle Scholar
  4. Astrom KE, Mancell EL, Richardson EPJ (1958) Progressive multifocal encephalopathy: a hitherto unrecognized complication of chronic lymphocytic leukemia and lymphoma. Brain. 81:99–111Google Scholar
  5. Atwood WJ, Amemiya K, Traub R, Harms J, Major EO (1992) Interaction of the human polyomavirus, JCV, with human B-lymphocytes. Virology 190:716–723PubMedGoogle Scholar
  6. Ault GS (1997) Activity of JC virus archetype and PML-type regulatory regions in glial cells. J. Gen. Virol. 78:163–169PubMedGoogle Scholar
  7. Bacchetta F, Mathias A, Schluep M, Du Pasquier R (2017 Feb) Progressive multifocal leukoencephalopathy in two natalizumab-treated stepsisters: an intriguing coincidence. Mult Scler 23(2):300–303PubMedGoogle Scholar
  8. Bateman OJ, Squires G, Thannhauser SJ (1945) Hodgkin’s disease associated with Schilder’s disease. Ann Intern Med 22:426–431Google Scholar
  9. Baum S, Ashok A, Gee G, Dimitrova G, Querbes W, Jordan J, Atwood WJ (2003) Early events in the life cycle of JC virus as potential therapeutic targets for the treatment of progressive multifocal leukoencephalopathy. J Neuro-Oncol 9:32–37Google Scholar
  10. Berger JR (2017) Classifying PML risk with disease modifying therapies. Mult Scler Relat Disord 12:59–63PubMedGoogle Scholar
  11. Berger JR, Chauhan A, Galey D, Nath A (2001) Epidemiological evidence and molecular basis of interactions between HIV and JC virus. J Neuro-Oncol 7:329–338Google Scholar
  12. Berger JR, Miller CS, Mootoor Y, Avdiushko SA, Kryscio RJ, Zhu H (2006) JC virus detection in bodily fluids: clues to transmission. Clin Infect Dis 43:9–12Google Scholar
  13. Bollag B, Prins C, Snyder EL, Frisque RJ (2000) Purified JC virus T and T’ proteins differentially interact with the retinoblastoma family of tumor suppressor proteins. Virology 274:165–178PubMedGoogle Scholar
  14. Bowen L, Nath A, Smith B (2018) CNS immune reconstitution inflammatory syndrome. Handb Clin Neurol 152:167–176PubMedGoogle Scholar
  15. Brooks BR, Walker DL (1984) Progressive multifocal encephalopathy. Neurol Clin 2:299–313PubMedGoogle Scholar
  16. Bullock PA, Seo YS, Hurwitz J (1991) Initiation of simian virus 40 DNA synthesis in vitro. Mol Cell Biol 11:2350–2361PubMedPubMedCentralGoogle Scholar
  17. Carter CC, Onafuwa-Nuga A, McNamara LA, Riddell J 4th, Bixby D, Savona MR, Collins KL (2010) HIV-1 infects multipotent progenitor cells causing cell death and establishing latent cellular reservoirs. Nat Med 16:446–451PubMedPubMedCentralGoogle Scholar
  18. Cavanaugh JB, Greenbaum D, Marchall A, Rubinstein L (1959) Cerebral demyelination associated with disorder of thereticuloendothelial system. Lancet II:524–529Google Scholar
  19. Chen NN, Change CF, Gallia GL, Kerr DA, Johnson EM, Krachmarov CP, Barr SM, Frisque RJ, Bollag B, Khalili K (1995) Cooperative action of cellular proteins YB-1 and Pur alpha with the tumor antigen of the human JC polyomavirus determines their interaction with the viral lytic control element. Proc Natl Acad Sci U S A 92:1087–1091PubMedPubMedCentralGoogle Scholar
  20. Chen NN, Kerr D, Chang CF, Honjo T, Khalili K (1997) Evidence for regulation of transcription and replication of the human neurotropic virus JCV genome by the human S(mu)bp-2 protein in glial cells. Gene 185:55–62PubMedGoogle Scholar
  21. Chowdhury M, Taylor JP, Tada H, Rappaport J, Wong-Staal F, Amini S, Khalili K (1990) Regulation of the human neurotropic virus promoter by JCV-T antigen and HIV-1 tat protein. Oncogene 5:1737–1742PubMedGoogle Scholar
  22. Chowdhury M, Taylor JP, Chang CF, Rappaport J, Khalili K (1992) Evidence that a sequence similar to TAR is important for induction of the JC virus late promoter by human immunodeficiency virus type 1 tat. J Virol 66:7355–7361PubMedPubMedCentralGoogle Scholar
  23. Chowdhury M, Kundu M, Khalili K (1993) GA/GC-rich sequence confers tat responsiveness to human neurotropic virus promoter, JCVL, in cells derived from central nervous system. Oncogene 8:887–892PubMedGoogle Scholar
  24. Christensen E, Fog M (1955) A case of Schilder’s disease in an adult with remarks to etiology and pathogenesis. Acta Psychiatr Neurol Scand 30:141–154PubMedGoogle Scholar
  25. Cinque P, Vago L, Dahl H et al (1996) Polymerase chain reaction on cerebrospinal fluid for diagnosis of virus- associated opportunistic diseases of the central nervous system in HIV- infected patients. Aids 10:951–958PubMedGoogle Scholar
  26. Cortese I, Muranski P, Enose-Akahata Y et al (2019) Pembrolizu- mab treatment for progressive multifocal leukoencephalopathy. N Engl J Med 380:1597–1605PubMedGoogle Scholar
  27. Craigie M, Regan P, Otalora YL, Sariyer IK (2015) Molecular interplay between T-antigen and splicing factor, arginine/serine-rich 1 (SRSF1) controls JC virus gene expression in glial cells. Virol J. 12:196PubMedPubMedCentralGoogle Scholar
  28. Craigie M, Cicalese S, Sariyer IK (2018 Jun) Neuroimmune regulation of JC virus by intracellular and extracellular Agnoprotein. J NeuroImmune Pharmacol 13(2):126–142PubMedGoogle Scholar
  29. Daniel DC, Kinoshita Y, Khan MA, Del Valle L, Khalili K, Rappaport J, Johnson EM (2004) Internalization of exogenous human immunodeficiency virus-1 protein, tat, by KG-1 oligodendroglioma cells followed by stimulation of DNA replication initiated at the JC virus origin. DNA Cell Biol 23:858–867PubMedGoogle Scholar
  30. Del Valle L, Baehring J, Lorenzana C, Giordano A, Khalili K, Croul S (2001) Expression of a human polyomavirus oncoprotein and tumour suppressor proteins in medulloblastomas. Mol Pathol 54:331–337PubMedPubMedCentralGoogle Scholar
  31. D'Souza A, Wilson J, Mukherjee S, Jaiyesimi I (2010 Feb) Progressive multifocal leukoencephalopathy in chronic lymphocytic leukemia: a report of three cases and review of the literature. Clin Lymphoma Myeloma Leuk 10(1):E1–E9PubMedGoogle Scholar
  32. Dugan AS, Gasparovic ML, Atwood WJ (2008) Direct correlation between sialic acid binding and infection of cells by two human polyomaviruses (JC virus and BK virus). J Virol 82:2560–2564PubMedGoogle Scholar
  33. Elphick GF, Querbes W, Jordan JA, Gee GV, Eash S, Manley K, Dugan A, Stanifer M, Bhatnagar A, Kroeze WK, Roth BL, Atwood WJ (2004) The human polyomavirus, JCV, uses serotonin receptors to infect cells. Science 19:1380–1383Google Scholar
  34. Enam S, Sweet TM, Amini S, Khalili K, Del Valle L (2004) Evidence for involvement of transforming growth factor beta1 signaling pathway in activation of JC virus in human immunodeficiency virus 1-associated progressive multifocal leukoencephalopathy. Arch Pathol Lab Med 128:282–291PubMedGoogle Scholar
  35. Engel S, Herger T, Mancini R, Herzog F, Kartenbeck J, Hayer A, Helenius A (2011) Role of endosomes in simian virus 40 entry and infection. J Virol 85:4198–4211PubMedPubMedCentralGoogle Scholar
  36. Engelhardt B, Kappos L (2008) Natalizumab: targeting alpha4-integrins in multiple sclerosis. Neurodegener Dis 5:16–22PubMedGoogle Scholar
  37. Ensoli B, Buonaguro L, Barillari G, Fiorelli V, Gendelman R, Morgan RA, Wingfield P, Gallo RC (1993) Release, uptake, and effects of extracellular human immunodeficiency virus type 1 tat protein on cell growth and viral transactivation. J Virol 67:277–287PubMedPubMedCentralGoogle Scholar
  38. Fabis-Pedrini MJ, Xu W, Burton J, Carroll WM, Kermode AG (2016 Mar) Asymptomatic progressive multifocal leukoencephalopathy during natalizumab therapy with treatment. J Clin Neurosci 25:145–147PubMedGoogle Scholar
  39. Fairman MP, Stillman B (1988) Cellular factors required for multiple stages of SV40 DNA replication in vitro. EMBO J 7:1211–1218PubMedPubMedCentralGoogle Scholar
  40. Felli V, Di Sibio A, Anselmi M, Gennarelli A, Sucapane P, Splendiani A, Catalucci A, Marini C, Gallucci M (2014) Progressive multifocal leukoencephalopathy following treatment with rituximab in an HIV-negative patient with non-Hodgkin lymphoma. A case report and literature review. Neuroradiol J 27(6):657–664PubMedPubMedCentralGoogle Scholar
  41. Ferenczy MW, Marshall LJ, Nelson CDS, Atwood WJ, Nath A, Khalili K, Major EO (2012) Molecular biology, epidemiology, and pathogenesis of progressive multifocal leukoencephalopathy, the JC virus-induced demyelinating disease of the human brain. Clin Microb Rev 25:471–505Google Scholar
  42. Fleischmann RM (2009) Progressive multifocal leukoencephalopathy following rituximab treatment in a patient with rheumatoid arthritis. Arthritis Rheum 60(11):3225–3228PubMedGoogle Scholar
  43. Fournier A, Martin-Blondel G, Lechapt-Zalcman E, Dina J, Kazemi A, Verdon R, Mortier E, de La Blanchardière A (2017) Immune reconstitution inflammatory syndrome unmasking or worsening AiDS-related progressive multifocal leukoencephalopathy: a literature review. Front Immunol 8:577PubMedPubMedCentralGoogle Scholar
  44. Freim Wahl SG, Folvik MR, Torp SH (2007) Progressive multifocal leukoencephalopathy in a lymphoma patient with complete remission after treatment with cytostatics and rituximab: case report and review of the literature. Clin Neuropathol 26(2):68–73PubMedGoogle Scholar
  45. Frisque RJ (1983) Regulatory sequences and virus-cell interactions of JC virus. Prog Clin Biol Res 105:41–59PubMedGoogle Scholar
  46. Gadzia J, Turner J (2010) Progressive multifocal leukoencephalopathy in two psoriasis patients treated with efalizumab. J Drugs Dermatol 9(8):1005–1009PubMedGoogle Scholar
  47. Gagne Brosseau MS, Stobbe G, Wundes A (2016) Natalizumab-related PML 2 weeks after negative anti-JCV antibody assay. Neurology. 86(5):484–486PubMedGoogle Scholar
  48. Ge H, Manley JL (1990) A protein factor, ASF, controls cell-specific alternative splicing of SV40 early pre-mRNA in vitro. Cell 13:25–34Google Scholar
  49. Gheuens S, Bord E, Kesari S et al (2011) Role of CD4+ and CD8+ T-cell responses against JC virus in the outcome of patients with progressive multifocal leukoencephalopathy (PML) and PML with immune reconstitution inflammatory syndrome. J Virol 85(14):7256–7263PubMedPubMedCentralGoogle Scholar
  50. Gheuens S, Smith DR, Wang X, Alsop DC, Lenkinski RE, Koralnik IJ (2012) Simultaneous PML-IRIS after discontinuation of natalizumab in a patient with MS. Neurology. 78(18):1390–1393PubMedPubMedCentralGoogle Scholar
  51. Hallervorden J (1930) Eigennartige und nicht rubizierbare Prozesse. In: Bumke O (ed) Handbuch der Geiteskranhetinen Springer. Germany, Berlin, pp 1063–1107Google Scholar
  52. Havla J, Berthele A, Kümpfel T, Krumbholz M, Jochim A, Kronsbein H, Ryschkewitsch C, Jensen P, Lippmann K, Hemmer B, Major E, Hohlfeld R (2013) Co-occurrence of two cases of progressive multifocal leukoencephalopathy in a natalizumab "infusion group". Mult Scler 19(9):1213–1215PubMedGoogle Scholar
  53. Himedan M, Camelo-Piragua S, Mills EA, Gupta A, Aburashed R, Mao-Draayer Y (2017) Pathologic findings of chronic PML-IRIS in a patient with prolonged PML survival following Natalizumab treatment. J Investig Med High Impact Case Rep 5(3):2324709617734248PubMedPubMedCentralGoogle Scholar
  54. Houff SA, Berger JR (2008) The bone marrow, B cells, and JC virus. J Neuro-Oncol 14:341–343Google Scholar
  55. Houff SA, Major EO, Katz DA, Kufta CV, Sever JL, Pittaluga S, Roberts JR, Gitt J, Saini N, Lux W (1988) Involvement of JC virus-infected mononuclear cells from the bone marrow and spleen in the pathogenesis of progressive multifocal leukoencephalopathy. N Engl J Med 318:301–305PubMedGoogle Scholar
  56. Ikegaya H, Iwase H (2004) Trial for the geographical identification using JC viral genotyping in Japan. Forensic Sci Int 139:169–172PubMedGoogle Scholar
  57. Isidoro L, Pires P, Rito L, Cordeiro G (2014) Progressive multifocal leukoencephalopathy in a patient with chronic lymphocytic leukaemia treated with alemtuzumab. BMJ Case Rep. 8:2014Google Scholar
  58. Jing D, Oelschlaegel U, Ordemann R, Hölig K, Ehninger G, Reichmann H, Ziemssen T, Bornhäuser M (2010) CD49d blockade by natalizumab in patients with multiple sclerosis affects steady-state hematopoiesis and mobilizes progenitors with a distinct phenotype and function. Bone Marrow Transplant 45:1489–1496PubMedGoogle Scholar
  59. Kerr D, Chang CF, Chen N, Gallia G, Raj G, Schwartz B, Khalili K (1994) Transcription of a human neurotropic virus promoter in glial cells: effect of YB-1 on expression of the JC virus late gene. J Virol 68:7637–7643PubMedPubMedCentralGoogle Scholar
  60. Knowles WA, Pipkin P, Andrews N, Vyse A, Minor P, Brown DW, Miller E (2003) Population-based study of antibody to the human polyomaviruses BKV and JCV and the simian polyomavirus SV40. J Med Virol 71:115–123PubMedGoogle Scholar
  61. Koralnik IJ (2019 Apr 25) Can immune checkpoint inhibitors keep JC virus in check? N Engl J Med 380(17):1667–1668PubMedGoogle Scholar
  62. Kothary N, Diak IL, Brinker A, Bezabeh S, Avigan M, Dal PG (2011 Sep) Progressive multifocal leukoencephalopathy associated with efalizumab use in psoriasis patients. J Am Acad Dermatol 65(3):546–551PubMedGoogle Scholar
  63. Krumbholz M, Meinl I, Kumpfel T, Hohlfeld R, Meinl E (2008) Natalizumab disproportionately increases circulating pre-B and B cells in multiple sclerosis. Neurology 71:1350–1354PubMedGoogle Scholar
  64. Kumar D, Bouldin TW, Berger RG (2010 Nov) A case of progressive multifocal leukoencephalopathy in a patient treated with infliximab. Arthritis Rheum 62(11):3191–3195PubMedGoogle Scholar
  65. Langer-Gould A, Atlas SW, Green AJ, Bollen AW, Pelletier D (2005 Jul 28) Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N Engl J Med 353(4):375–381PubMedGoogle Scholar
  66. Lebwoh M, Tyring SK, Hamilton TK, Toth D, Glazer S, Tawfik NH, Walicke P, Dummer W, Wang X, Garovoy MR, Pariser D, Efalizumab Study Group (2003) A novel targeted T-cell modulator, efalizumab, for plaque psoriasis. N Engl J Med 349:2004–2013Google Scholar
  67. Lee SH, Hurwitz J (1990) Mechanism of elongation of primed DNA by DNA polymerase delta, proliferating cell nuclear antigen, and activator 1. Proc Natl Acad Sci U S A 87:5672–5676PubMedPubMedCentralGoogle Scholar
  68. Lindå H, von Heijne A, Major EO, Ryschkewitsch C, Berg J, Olsson T, Martin C (2009) Progressive multifocal leukoencephalopathy after natalizumab monotherapy. N Engl J Med 361(11):1081–1087PubMedGoogle Scholar
  69. Lindberg RL, Achtnichts L, Hoffmann F, Kuhle J, Kappos L (2008) Natalizumab alters transcriptional expression profiles of blood cell subpopulations of multiple sclerosis patients. J Neuroimmunol 194:153–164PubMedGoogle Scholar
  70. Lipsky JJ (1996) Mycophenolate mofetil. Lancet 348:1357–1359PubMedGoogle Scholar
  71. Liu CK, Wei G, Atwood WJ (1998) Infection of glial cells by the human polyomavirus JC is mediated by N-linked glycoprotein containing terminal alpha (2-6)-linked sialic acids. J Virol 72:4643–4649PubMedPubMedCentralGoogle Scholar
  72. Maginnis MS, Haley SA, Gee GV, Atwood WJ (2010) Role of N-linked glycosylation of the 5-HT2A receptor in JC virus infection. J Virol 84:9677–9684PubMedPubMedCentralGoogle Scholar
  73. Major EO (2010) Progressive multifocal leukoencephalopathy in patients on immunomodulatory therapies. Annu Rev Med 61:35–47PubMedGoogle Scholar
  74. Major EO, Neel JV (1998) The JC and BK human polyoma viruses appear to be recent introductions to some south American Indian tribes: there is no serological evidence of cross-reactivity with the simian polyoma virus SV40. Proc Natl Acad Sci U S A 95:15525–15530PubMedPubMedCentralGoogle Scholar
  75. Major EO, Amemiya K, Elder G, Houff SA (1990) Glial cells of the human developing brain and B cells of the immune system share a common DNA binding factor for recognition of the regulatory sequences of the human polyomavirus. JCV J Neurosci Res 27:461–471PubMedGoogle Scholar
  76. Major EO, Amemiya K, Elder G, Tornatore CS, Houff SA, Berger JR (1992) Pathogenesis and molecular biology of progressive multifocal leukoencephalopathy, the JC-virus induced demyelinating disease of the human brain. Clin Microbiol Rev 5:49–73PubMedPubMedCentralGoogle Scholar
  77. Marshall LJ, Dunham L, Major EO (2010) Transcription factor Spi-B binds unique sequences present in the tandem repeat promoter/ enhancer of JC virus and supports viral activity. J. Gen. Virol. 91:3042–3052PubMedPubMedCentralGoogle Scholar
  78. Martin-Blondel G, Bauer J, Cuvinciuc V, Uro-Coste E, Debard A, Massip P, Delisle MB, Lassmann H, Marchou B, Mars LT, Liblau RS (2013 Sep 10) In situ evidence of JC virus control by CD8+ T cells in PML–IRIS during HIV infection. Neurology. 81(11):964–970PubMedGoogle Scholar
  79. Martin-Blondel G, Bauer J, Uro-Coste E, Biotti D, Averseng-Peaureaux D, Fabre N, Dumas H, Bonneville F, Lassmann H, Marchou B, Liblau RS, Brassat D (2015 Mar) Therapeutic use of CCR5 antagonists is supported by strong expression of CCR5 on CD8(+) T cells in progressive multifocal leukoencephalopathy-associated immune reconstitution inflammatory syndrome. Acta Neuropathol 129(3):463–465PubMedGoogle Scholar
  80. Mázló M, Tariska I (1982) Are astrocytes infected in progressive multifocal leukoencephalopathy? Acta Neuropathol 56:45–51PubMedGoogle Scholar
  81. McLaughlin P, Grillo-López AJ, Link BK, Levy R, Czuczman MS, Williams ME, Heyman MR, Bence-Bruckler I, White CA, Cabanillas F, Jain V, Ho AD, Lister J, Wey K, Shen D, Dallaire BK (1998) Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 16:2825–2833PubMedGoogle Scholar
  82. Monaco MC, Atwood WJ, Gravell M, Tornatore CS, Major EO (1996) JC virus infection of hematopoietic progenitor cells, primary B lymphocytes, and tonsillar stromal cells: implications for viral latency. J Virol 70:7004–7012PubMedPubMedCentralGoogle Scholar
  83. Müller M, Wandel S, Colebunders R, Attia S, Furrer H (2010 Apr) Egger M; IeDEA southern and Central Africa. Immune reconstitution inflammatory syndrome in patients starting antiretroviral therapy for HIV infection: a systematic review and meta-analysis. Lancet Infect Dis 10(4):251–261PubMedPubMedCentralGoogle Scholar
  84. Nesper J, Smith RW, Kautz AR, Sock E, Wegner M, Grummt F, Nasheuer HP (1997) A cell-free replication system for human polyomavirus JC DNA. J Virol 71:7421–7428PubMedPubMedCentralGoogle Scholar
  85. Neu U, Maginnis M, Palma A, Ströh LJ, Nelson CDS, Feizi T, Atwood WJ, Stehle T (2011) Structure-function analysis of the human JC polyomavirus establishes the LSTc pentasaccharide as a functional receptor motif. Cell Host Microb 8:309–319Google Scholar
  86. Nukuzuma S et al (2010) Efficient propagation of progressive multifocal leukoencephalopathy-type JC virus in COS-7-derived cell lines stably expressing tat protein of human immunodeficiency virus type 1. Microbiol Immunol 54:758–762PubMedGoogle Scholar
  87. Okada Y, Endo S, Takahashi H, Sawa H, Umemura T, Nagashima K (2001) Distribution and function of JCV agnoprotein. J Neuro-Oncol 7:302–306Google Scholar
  88. Otlu O, De Simone FI, Otalora YL, Khalili K, Sariyer IK (2014) The agnoprotein of polyomavirus JC is released by infected cells: evidence for its cellular uptake by uninfected neighboring cells. Virology 468–470:88–95PubMedGoogle Scholar
  89. Parikh A, Stephens K, Major E, Fox I, Milch C, Sankoh S, Lev MH, Provenzale JM, Shick J, Patti M, McAuliffe M, Berger JR, Clifford DB (2018) A Programme for risk assessment and minimisation of progressive multifocal leukoencephalopathy developed for Vedolizumab clinical trials. Drug Saf.  https://doi.org/10.1007/s40264-018-0669-8 PubMedPubMedCentralGoogle Scholar
  90. Paues J, Vrethem M (2010) Fatal progressive multifocal leukoencephalopathy in a patient with non-Hodgkin lymphoma treated with rituximab. J Clin Virol 48(4):291–293PubMedGoogle Scholar
  91. Petito CK, Cash KS (1992) Blood-brain barrier abnormalities in the acquired immunodeficiency syndrome: immunohistochemical localization of serum proteins in postmortem brain. Ann Neurol 32:658–666PubMedGoogle Scholar
  92. Phan-Ba R, Lommers E, Tshibanda L, Calay P, Dubois B, Moonen G, Clifford D, Belachew S (2012) MRI preclinical detection and asymptomatic course of a progressive multifocal leucoencephalopathy (PML) under natalizumab therapy. J Neurol Neurosurg Psychiatry 83(2):224–226PubMedGoogle Scholar
  93. Pho MT, Ashok A, Atwood WJ (2000) JC virus enters human glial cells by clathrin-dependent receptor-mediated endocytosis. J Virol 74:2288–2292PubMedPubMedCentralGoogle Scholar
  94. Puri V, Chaundhry N, Gulati P, Patel N, Tatke M, Sinha S (2010) Progressive multifocal leukoencephalopathy in a patient with idiopathic CD4+ T lymphocytopenia. Neurol India 58:118–121PubMedGoogle Scholar
  95. Querbes W, Benmerah A, Tosoni D, Di Fiore PP, Atwood WJ (2004) A JC virus-induced signal is required for infection of glial cells by a clarthin- and eps15-dependent pathway. J Virol 78:250–256PubMedPubMedCentralGoogle Scholar
  96. Querbes W, O’Hara BA, Williams G, Atwood WJ (2006) Invasion of host cells by JC virus identifies a novel role for caveolae in endosomal sorting of noncaveolar ligands. J Virol 80:9402–9413PubMedPubMedCentralGoogle Scholar
  97. Ranganathan PN, Khalili K (1993) The transcriptional enhancer element, kappa B, regulates promoter activity of the human neurotrophic virus, JCV, in cells derived from the CNS. Nucleic Acids Res 21:1959–1964PubMedPubMedCentralGoogle Scholar
  98. Rauer S, Marks R, Urbach H et al (2019) Treatment of progressive multifocal leukoencephalopathy with pembrolizumab. N Engl J Med 380:1676–1677PubMedGoogle Scholar
  99. Ravichandran V, Sabath BF, Jensen PN, Houff SA, Major EO (2006) Interactions between c-Jun, nuclear factor 1, and JC virus promoter sequences: implications for viral tropism. J Virol 80:10506–10513PubMedPubMedCentralGoogle Scholar
  100. Reff ME, Carner K, Chambers KS, Chinn PC, Leonard JE, Raab R, Newman RA, Hanna N, Anderson DR (1994) Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 83:435–445PubMedGoogle Scholar
  101. Rice GP, Hartung HP, Calabresi PA (2005) Anti-alpha4 integrin therapy for multiple sclerosis: mechanisms and rationale. Neurology. 64:1336–1342PubMedGoogle Scholar
  102. Richardson EP Jr (1961) Progressive multifocal leukoencephalopathy. N Engl J Med 265:815–823PubMedGoogle Scholar
  103. Rudnicka D, Oszmiana A, Finch DK, Strickland I, Schofield DJ, Lowe DC, Sleeman MA, Davis DM (2013) Rituximab causes a polarization of B cells that augments its therapeutic function in NK-cell-mediated antibody-dependent cellular cytotoxicity. Blood. 121(23):4694–4702PubMedGoogle Scholar
  104. Sano Y, Nakano Y, Omoto M, Takao M, Ikeda E, Oga A, Nakamichi K, Saijo M, Maoka T, Sano H, Kawai M, Kanda T (2015) Rituximab-associated progressive multifocal leukoencephalopathy derived from non-Hodgkin lymphoma: neuropathological findings and results of mefloquine treatment. Intern Med 54(8):965–970PubMedGoogle Scholar
  105. Saribas AS, Ozdemir A, Lam C, Safak M (2010) JC virus-induced progressive multifocal leukoencephalopathy. Future Virol 5:313–323PubMedPubMedCentralGoogle Scholar
  106. Saribas AS, White MK, Safak M (2018 Mar) Structure-based release analysis of the JC virus agnoprotein regions: a role for the hydrophilic surface of the major alpha helix domain in release. J Cell Physiol 233(3):2343–2359PubMedGoogle Scholar
  107. Sariyer, I.K., Khalili, K. (2011) Regulation of human neurotropic JC virus replication by alternative splicing factor SF2/ASF in glial cells. PLoS one. 2011 Jan 31;6(1):e14630PubMedPubMedCentralGoogle Scholar
  108. Sariyer R, De-Simone FI, Gordon J, Sariyer IK (2016) Immune suppression of JC virus gene expression is mediated by SRSF1. J Neuro-Oncol 22:597–606Google Scholar
  109. Schwab N, Ulzheimer JC, Fox RJ, Schneider-Hohendorf T, Kieseier BC, Monoranu CM, Staugaitis SM, Welch W, Jilek S, Du Pasquier RA, Brück W, Toyka KV, Ransohoff RM, Wiendl H (2012a Feb 14) Fatal PML associated with efalizumab therapy: insights into integrin αLβ2 in JC virus control. Neurology. 78(7):458–467PubMedPubMedCentralGoogle Scholar
  110. Schwab N, Höhn KG, Schneider-Hohendorf T, Metz I, Stenner MP, Jilek S, Du Pasquier RA, Gold R, Meuth SG, Ransohoff RM, Brück W, Wiendl H (2012b Mar) Immunological and clinical consequences of treating a patient with natalizumab. Mult Scler 18(3):335–344PubMedGoogle Scholar
  111. Shivakumar CV, Das GC (1994) Biochemical and mutational analysis of the polyomavirus core promoter: involvement of nuclear factor-1 in early promoter function. J Gen Virol 75:1281–1290PubMedGoogle Scholar
  112. Sierra Morales F, Illingworth C, Lin K, Rivera Agosto I, Powell C, Sloane JA, Koralnik IJ (2017 Oct) PML-IRIS in an HIV-2-infected patient presenting as Bell's palsy. J Neuro-Oncol 23(5):789–792Google Scholar
  113. Sikkema T, Schuiling WJ, Hoogendoorn M (2013 Jan) Progressive multifocal leukoencephalopathy during treatment with rituximab and CHOP chemotherapy in a patient with a diffuse large B-cell lymphoma. BMJ Case Rep 25:2013Google Scholar
  114. Stettner MR, Nance JA, Wright CA, Kinoshita Y, Kim WK, Morgello S, Rappaport J, Khalili K, Gordon J, Johnson EM (2009) SMAD proteins of oligodendroglial cells regulate transcription of JC virus early and late genes coordinately with the tat protein of human immunodeficiency virus type 1. J. Gen. Virol. 90:2005–2014PubMedPubMedCentralGoogle Scholar
  115. Stoppe M, Thomä E, Liebert UG, Major EO, Hoffmann KT, Claßen J, Then BF (2014 May) Cerebellar manifestation of PML under fumarate and after efalizumab treatment of psoriasis. J Neurol 261(5):1021–1024PubMedGoogle Scholar
  116. Suzuki T, Orba Y, Okada Y, Sunden Y, Kimura T, Tanaka S, Nagashima K, Hall WW, Sawa H (2010 Mar 12) The human polyoma JC virus agnoprotein acts as a viroporin. LoS Pathog 6(3):e1000801Google Scholar
  117. Tada H, Khalili K (1992) A novel sequence-specific DNA-binding protein, LCP-1, interacts with single-stranded DNA and differentially regulates early gene expression of the human neurotropic JC virus. J Virol 66:6885–6892PubMedPubMedCentralGoogle Scholar
  118. Tada H, Rappaport J, Lashgari M, Amini S, Wong-Staal F, Khalili K (1990) Trans-activation of the JC virus late promoter by the tat protein of type 1 human immunodeficiency virus in glial cells. Proc Natl Acad Sci U S A 87:3479–3483PubMedPubMedCentralGoogle Scholar
  119. Tavis JE, Trowbridge PW, Frisque RJ (1994) Converting the JCV T antigen Rb binding domain to that of SV40 does not alter JCV’s limited transforming activity but does eliminate viral viability. Virology 199:384–392PubMedGoogle Scholar
  120. Taylor JP, Cupp C, Diaz A, Chowdhury M, Khalili K, Jimenez SA, Amini S (1992) Activation of expression of genes coding for extracellular matrix proteins in tat-producing glioblastoma cells. Proc Natl Acad Sci U S A 89:9617–9621PubMedPubMedCentralGoogle Scholar
  121. Tornatore C, Berger JR, Houff SA, Curfman B, Meyers K, Winfield D, Major EO (1992) Detection of JC virus DNA in peripheral lymphocytes from patients with and without progressive multifocal leukoencephalopathy. Ann Neurol 31:454–462PubMedGoogle Scholar
  122. Tsurimoto T, Melendy T, Stillman B (1990) Sequential initiation of lagging and leading strand synthesis by two different polymerase complexes at the SV40 DNA replication origin. Nature 346:534–539PubMedGoogle Scholar
  123. Uleri E, Beltrami S, Gordon J, Dolei A, Sariyer IK (2011) Extinction of tumor antigen expression by SF2/ASF in JCV-transformed cells. Genes Cancer 2:728–736PubMedPubMedCentralGoogle Scholar
  124. Uphaus T, Oberwittler C, Groppa S, Zipp F, Bittner S (2017 Dec) Disease reactivation after switching from natalizumab to daclizumab. J Neurol 264(12):2491–2494PubMedGoogle Scholar
  125. Van Assche G, Van Ranst M, Sciot R, Dubois B, Vermeire S, Noman M, Verbeeck J, Geboes K, Robberecht W, Rutgeerts P (2005 Jul 28) Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn's disease. N Engl J Med 353(4):362–368PubMedGoogle Scholar
  126. Vendrely A, Bienvenu B, Gasnault J, Theibault JB, Salmon D, Gray F (2005) Fulminant inflammatory leukoencephalopathy associated with HAART-induced immune restoration in AIDS-related progressive multifocal leukoencephalopathy. Acta Neuropathol 109:449–455PubMedGoogle Scholar
  127. Waggoner J, Martinu T, Palmer SM (2009 Apr) Progressive multifocal leukoencephalopathy following heightened immunosuppression after lung transplant. J Heart Lung Transplant 28(4):395–398PubMedPubMedCentralGoogle Scholar
  128. Warsch S, Hosein PJ, Morris MI, Teomete U, Benveniste R, Chapman JR, Lossos IS (2012 Aug) Progressive multifocal leukoencephalopathy following treatment with bendamustine and rituximab. Int J Hematol 96(2):274–278PubMedGoogle Scholar
  129. Wegner M, Drolet DW, Rosenfeld MG (1993) Regulation of JC virus by the POU-domain transcription factor Tst-1: implications for progressive multifocal leukoencephalopathy. Proc Natl Acad Sci U S A 90:4743–4747PubMedPubMedCentralGoogle Scholar
  130. Weinberg DH, Collins KL, Simancek P, Russo A, Wold MS, Virshup DM, Kelly TJ (1990) Reconstitution of simian virus 40 DNA replication with purified proteins. Proc Natl Acad Sci U S A 87:8692–8696PubMedPubMedCentralGoogle Scholar
  131. White MK, Khalili K (2006) Interaction of retinoblastoma protein family members with large T-antigen of primate polyomaviruses. Oncogene 25:5286–5293PubMedGoogle Scholar
  132. Wiley CA, Grafe M, Kennedy C, Nelson JA (1988) Human immunodeficiency virus and JC virus in acquired immune deficiency syndrome patients with progressive multifocal leukoencephalopathy. Acta Neuropathol 76:338–346PubMedGoogle Scholar
  133. Windpessl M, Burgstaller S, Kronbichler A, Pieringer H, Kalev O, Karrer A, Wallner M, Thaler J (2018) Progressive multifocal leukoencephalopathy following combined rituximab-based immune-chemotherapy for post-transplant lymphoproliferative disorder in a renal transplant recipient: a case report. Transplant Proc 50(3):881–883PubMedGoogle Scholar
  134. Winkleman NW, Moore MT (1941) Lymphogranulomatosis (Hodgkin’s disease) of the nervous system. Arch Neurol Psychol 45:304–318Google Scholar
  135. Wüthrich C, Kesari S, Kim WK, Williams K, Gelman R, Elmeric D, De Girolami U, Joseph JT, Hedley-Whyte T, Koralnik IJ (2006) Characterization of lymphocytic infiltrate in progressive multifocal leukoencephalopathy: co-localization of CD8(+) T cells with JCV-infected glial cells. J Neuro-Oncol 12:116–128Google Scholar
  136. Yadav A, Collman RG (2009) CNS inflammation and macrophage/microglial biology associated with HIV-1 infection. J NeuroImmune Pharmacol 4:430–447PubMedPubMedCentralGoogle Scholar
  137. Yokoyama H, Watanabe T, Maruyama D, Kim SW, Kobayashi Y, Tobinai K (2008) Progressive multifocal leukoencephalopathy in a patient with B-cell lymphoma during rituximab-containing chemotherapy: case report and review of the literature. Int J Hematol 88(4):443–447PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Amir Khalili
    • 1
  • Michael Craigie
    • 1
  • Martina Donadoni
    • 1
  • Ilker Kudret Sariyer
    • 1
    Email author
  1. 1.Department of Neuroscience and Center for NeurovirologyLewis Katz School of Medicine at Temple UniversityPhiladelphiaUSA

Personalised recommendations