Advertisement

Modern Techniques for the Isolation of Extracellular Vesicles and Viruses

  • Ryan P. McNamara
  • Dirk P. DittmerEmail author
Invited Review

Abstract

Extracellular signaling is pivotal to maintain organismal homeostasis. A quickly emerging field of interest within extracellular signaling is the study of extracellular vesicles (EV), which act as messaging vehicles for nucleic acids, proteins, metabolites, lipids, etc. from donor cells to recipient cells. This transfer of biologically active material within a vesicular body is similar to the infection of a cell through a virus particle, which transfers genetic material from one cell to another to preserve an infection state, and viruses are known to modulate EV. Although considerable heterogeneity exists within EV and viruses, this review focuses on those that are small (< 200 nm in diameter) and of relatively low density (< 1.3 g/mL). A multitude of isolation methods for EV and virus particles exist. In this review, we present an update on methods for their isolation, purification, and phenotypic characterization. We hope that the information we provide will be of use to basic science and clinical investigators, as well as biotechnologists in this emerging field.

Graphical Abstract

Keywords

Extracellular vesicles Viruses Exosomes Microvesicles 

Notes

Acknowledgements

This work was supported by Public Health Service Grant 1R01DA040394 to Dirk Dittmer and a Translational Fellow Award of the AIDS Malignancy Consortium (AMC) to Ryan McNamara as part of the 5UM1CA121947-10.

References

  1. Adams A (1973) Concentration of Epstein-Barr virus from cell culture fluids with polyethylene glycol. J Gen Virol 20(3):391–394.  https://doi.org/10.1099/0022-1317-20-3-391 CrossRefPubMedGoogle Scholar
  2. Ahsan NA, Sampey GC, Lepene B, Akpamagbo Y, Barclay RA, Iordanskiy S, Hakami RM, Kashanchi F (2016) Presence of viral RNA and proteins in exosomes from cellular clones resistant to Rift Valley fever virus infection. Front Microbiol 7:139.  https://doi.org/10.3389/fmicb.2016.00139 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anderson MR, Kashanchi F, Jacobson S (2016) Exosomes in viral disease. Neurotherapeutics 13(3):535–546.  https://doi.org/10.1007/s13311-016-0450-6 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Anderson M, Kashanchi F, Jacobson S (2018) Role of exosomes in human retroviral mediated disorders. J NeuroImmune Pharmacol 13(3):279–291.  https://doi.org/10.1007/s11481-018-9784-7 CrossRefPubMedGoogle Scholar
  5. Aqil M, Naqvi AR, Mallik S, Bandyopadhyay S, Maulik U, Jameel S (2014) The HIV Nef protein modulates cellular and exosomal miRNA profiles in human monocytic cells. J Extracell Vesicles 3.  https://doi.org/10.3402/jev.v3.23129
  6. Arakelyan A, Fitzgerald W, Margolis L, Grivel JC (2013) Nanoparticle-based flow virometry for the analysis of individual virions. J Clin Invest 123(9):3716–3727.  https://doi.org/10.1172/JCI67042 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Arakelyan A, Fitzgerald W, King DF, Rogers P, Cheeseman HM, Grivel JC, Shattock RJ, Margolis L (2017) Flow virometry analysis of envelope glycoprotein conformations on individual HIV virions. Sci Rep 7(1):948.  https://doi.org/10.1038/s41598-017-00935-w CrossRefPubMedPubMedCentralGoogle Scholar
  8. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL, Tait JF, Tewari M (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108(12):5003–5008.  https://doi.org/10.1073/pnas.1019055108 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bachrach U, Friedmann A (1971) Practical procedures for the purification of bacterial viruses. Appl Microbiol 22(4):706–715PubMedPubMedCentralGoogle Scholar
  10. Baglio SR, van Eijndhoven MA, Koppers-Lalic D, Berenguer J, Lougheed SM, Gibbs S et al (2016) Sensing of latent EBV infection through exosomal transfer of 5'pppRNA. Proc Natl Acad Sci U S A 113(5):E587–E596.  https://doi.org/10.1073/pnas.1518130113 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Baranyai T, Herczeg K, Onódi Z, Voszka I, Módos K, Marton N, Nagy G, Mäger I, Wood MJ, el Andaloussi S, Pálinkás Z, Kumar V, Nagy P, Kittel Á, Buzás EI, Ferdinandy P, Giricz Z (2015) Isolation of exosomes from blood plasma: qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. PLoS One 10(12):e0145686.  https://doi.org/10.1371/journal.pone.0145686 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Barclay RA, Schwab A, DeMarino C, Akpamagbo Y, Lepene B, Kassaye S, Iordanskiy S, Kashanchi F (2017) Exosomes from uninfected cells activate transcription of latent HIV-1. J Biol Chem 292(28):11682–11701.  https://doi.org/10.1074/jbc.M117.793521 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Blom H, Åkerblom A, Kon T, Shaker S, van der Pol L, Lundgren M (2014) Efficient chromatographic reduction of ovalbumin for egg-based influenza virus purification. Vaccine 32(30):3721–3724.  https://doi.org/10.1016/j.vaccine.2014.04.033 CrossRefPubMedGoogle Scholar
  14. Bobrie A, Colombo M, Krumeich S, Raposo G, Théry C (2012) Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J Extracell Vesicles 1.  https://doi.org/10.3402/jev.v1i0.18397
  15. Bonar MM, Tilton JC (2017) High sensitivity detection and sorting of infectious human immunodeficiency virus (HIV-1) particles by flow virometry. Virology 505:80–90.  https://doi.org/10.1016/j.virol.2017.02.016 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bousse T, Shore DA, Goldsmith CS, Hossain MJ, Jang Y, Davis CT, Donis RO, Stevens J (2013) Quantitation of influenza virus using field flow fractionation and multi-angle light scattering for quantifying influenza A particles. J Virol Methods 193(2):589–596.  https://doi.org/10.1016/j.jviromet.2013.07.026 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bridgeman A, Maelfait J, Davenne T, Partridge T, Peng Y, Mayer A, Dong T, Kaever V, Borrow P, Rehwinkel J (2015) Viruses transfer the antiviral second messenger cGAMP between cells. Science 349(6253):1228–1232.  https://doi.org/10.1126/science.aab3632 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bukong TN, Momen-Heravi F, Kodys K, Bala S, Szabo G (2014) Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90. PLoS Pathog 10(10):e1004424.  https://doi.org/10.1371/journal.ppat.1004424 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Busatto S, Vilanilam G, Ticer T, Lin WL, Dickson DW, Shapiro S et al (2018) Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid. Cells 7(12).  https://doi.org/10.3390/cells7120273
  20. Castro-Mejía JL, Muhammed MK, Kot W, Neve H, Franz CM, Hansen LH et al (2015) Optimizing protocols for extraction of bacteriophages prior to metagenomic analyses of phage communities in the human gut. Microbiome 3:64.  https://doi.org/10.1186/s40168-015-0131-4 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ceglarek I, Piotrowicz A, Lecion D, Miernikiewicz P, Owczarek B, Hodyra K, Harhala M, Górski A, Dąbrowska K (2013) A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display. Sci Rep 3:3220.  https://doi.org/10.1038/srep03220 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Chevillet JR, Kang Q, Ruf IK, Briggs HA, Vojtech LN, Hughes SM, Cheng HH, Arroyo JD, Meredith EK, Gallichotte EN, Pogosova-Agadjanyan EL, Morrissey C, Stirewalt DL, Hladik F, Yu EY, Higano CS, Tewari M (2014) Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci U S A 111(41):14888–14893.  https://doi.org/10.1073/pnas.1408301111 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Chowdhury R, Webber JP, Gurney M, Mason MD, Tabi Z, Clayton A (2015) Cancer exosomes trigger mesenchymal stem cell differentiation into pro-angiogenic and pro-invasive myofibroblasts. Oncotarget 6(2):715–731.  https://doi.org/10.18632/oncotarget.2711 CrossRefPubMedGoogle Scholar
  24. Chu JJ, Ng ML (2004) Infectious entry of West Nile virus occurs through a clathrin-mediated endocytic pathway. J Virol 78(19):10543–10555.  https://doi.org/10.1128/JVI.78.19.10543-10555.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Chugh PE, Sin SH, Ozgur S, Henry DH, Menezes P, Griffith J, Eron JJ, Damania B, Dittmer DP (2013) Systemically circulating viral and tumor-derived microRNAs in KSHV-associated malignancies. PLoS Pathog 9(7):e1003484.  https://doi.org/10.1371/journal.ppat.1003484 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Corso G, Mäger I, Lee Y, Görgens A, Bultema J, Giebel B, Wood MJA, Nordin JZ, Andaloussi SEL (2017) Reproducible and scalable purification of extracellular vesicles using combined bind-elute and size exclusion chromatography. Sci Rep 7(1):11561.  https://doi.org/10.1038/s41598-017-10646-x CrossRefPubMedPubMedCentralGoogle Scholar
  27. Crescitelli R, Lässer C, Szabó TG, Kittel A, Eldh M, Dianzani I, Buzás EI, Lötvall J (2013) Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles 2.  https://doi.org/10.3402/jev.v2i0.20677
  28. Cvjetkovic A, Lötvall J, Lässer C (2014) The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. J Extracell Vesicles 3.  https://doi.org/10.3402/jev.v3.23111
  29. Dale BM, McNerney GP, Hübner W, Huser TR, Chen BK (2011) Tracking and quantitation of fluorescent HIV during cell-to-cell transmission. Methods 53(1):20–26.  https://doi.org/10.1016/j.ymeth.2010.06.018 CrossRefPubMedGoogle Scholar
  30. Davenport TM, Friend D, Ellingson K, Xu H, Caldwell Z, Sellhorn G, Kraft Z, Strong RK, Stamatatos L (2011) Binding interactions between soluble HIV envelope glycoproteins and quaternary-structure-specific monoclonal antibodies PG9 and PG16. J Virol 85(14):7095–7107.  https://doi.org/10.1128/JVI.00411-11 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Davis CN, Phillips H, Tomes JJ, Swain MT, Wilkinson TJ, Brophy PM, Morphew RM (2019) The importance of extracellular vesicle purification for downstream analysis: A comparison of differential centrifugation and size exclusion chromatography for helminth pathogens. PLoS Negl Trop Dis 13(2):e0007191.  https://doi.org/10.1371/journal.pntd.0007191 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Deng B, O'Connor CM, Kedes DH, Zhou ZH (2008) Cryo-electron tomography of Kaposi's sarcoma-associated herpesvirus capsids reveals dynamic scaffolding structures essential to capsid assembly and maturation. J Struct Biol 161(3):419–427.  https://doi.org/10.1016/j.jsb.2007.10.016 CrossRefPubMedGoogle Scholar
  33. Dittmer DP, Damania B (2013) Kaposi sarcoma associated herpesvirus pathogenesis (KSHV)--an update. Curr Opin Virol 3(3):238–244.  https://doi.org/10.1016/j.coviro.2013.05.012 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Effio CL, Hubbuch J (2015) Next generation vaccines and vectors: designing downstream processes for recombinant protein-based virus-like particles. Biotechnol J 10(5):715–727.  https://doi.org/10.1002/biot.201400392 CrossRefPubMedGoogle Scholar
  35. El Bilali N, Duron J, Gingras D, Lippé R (2017) Quantitative evaluation of protein heterogeneity within herpes simplex virus 1 particles. J Virol 91(10).  https://doi.org/10.1128/JVI.00320-17
  36. Ettelaie C, Collier ME, Maraveyas A, Ettelaie R (2014) Characterization of physical properties of tissue factor-containing microvesicles and a comparison of ultracentrifuge-based recovery procedures. J Extracell Vesicles 3.  https://doi.org/10.3402/jev.v3.23592
  37. Feng Z, Hensley L, McKnight KL, Hu F, Madden V, Ping L, Jeong SH, Walker C, Lanford RE, Lemon SM (2013) A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. Nature 496(7445):367–371.  https://doi.org/10.1038/nature12029 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Friedmann T, Haas M (1970) Rapid concentration and purification of polyoma virus and SV40 with polyethylene glycol. Virology 42(1):248–250CrossRefPubMedGoogle Scholar
  39. Gould SJ, Booth AM, Hildreth JE (2003) The Trojan exosome hypothesis. Proc Natl Acad Sci U S A 100(19):10592–10597.  https://doi.org/10.1073/pnas.1831413100 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Grzenia DL, Carlson JO, Wickramasinghe SR (2008) Tangential flow filtration for virus purification. J Membr Sci 321(2):373–380.  https://doi.org/10.1016/j.memsci.2008.05.020 CrossRefGoogle Scholar
  41. Hübner W, McNerney GP, Chen P, Dale BM, Gordon RE, Chuang FY et al (2009) Quantitative 3D video microscopy of HIV transfer across T cell virological synapses. Science 323(5922):1743–1747.  https://doi.org/10.1126/science.1167525 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr (2016) Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. Oncotarget 7(52):86999–87015.  https://doi.org/10.18632/oncotarget.13569 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hurwitz SN, Nkosi D, Conlon MM, York SB, Liu X, Tremblay DC, Meckes DG Jr (2017) CD63 regulates Epstein-Barr virus LMP1 Exosomal packaging, enhancement of vesicle production, and noncanonical NF-κB signaling. J Virol 91(5).  https://doi.org/10.1128/JVI.02251-16
  44. Hurwitz SN, Cheerathodi MR, Nkosi D, York SB, Meckes DG Jr (2018) Tetraspanin CD63 bridges Autophagic and endosomal processes to regulate Exosomal secretion and intracellular signaling of Epstein-Barr virus LMP1. J Virol 92(5).  https://doi.org/10.1128/JVI.01969-17
  45. Ivanova EA, Myasoedova VA, Melnichenko AA, Grechko AV, Orekhov AN (2017) Small dense Low-density lipoprotein as biomarker for atherosclerotic diseases. Oxidative Med Cell Longev 2017:1273042–1273010.  https://doi.org/10.1155/2017/1273042 CrossRefGoogle Scholar
  46. Iwai K, Minamisawa T, Suga K, Yajima Y, Shiba K (2016) Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations. J Extracell Vesicles 5:30829.  https://doi.org/10.3402/jev.v5.30829 CrossRefPubMedGoogle Scholar
  47. James KT, Cooney B, Agopsowicz K, Trevors MA, Mohamed A, Stoltz D, Hitt M, Shmulevitz M (2016) Novel high-throughput approach for purification of infectious Virions. Sci Rep 6:36826.  https://doi.org/10.1038/srep36826 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Jeppesen DK, Hvam ML, Primdahl-Bengtson B, Boysen AT, Whitehead B, Dyrskjøt L, Ørntoft TF, Howard KA, Ostenfeld MS (2014) Comparative analysis of discrete exosome fractions obtained by differential centrifugation. J Extracell Vesicles 3:25011.  https://doi.org/10.3402/jev.v3.25011 CrossRefPubMedGoogle Scholar
  49. Jørgensen M, Bæk R, Pedersen S, Søndergaard EK, Kristensen SR, Varming K (2013) Extracellular Vesicle (EV) Array: microarray capturing of exosomes and other extracellular vesicles for multiplexed phenotyping J Extracell Vesicles:2.  https://doi.org/10.3402/jev.v2i0.20920
  50. Kalamvoki M, Du T, Roizman B (2014) Cells infected with herpes simplex virus 1 export to uninfected cells exosomes containing STING, viral mRNAs, and microRNAs. Proc Natl Acad Sci U S A 111(46):E4991–E4996.  https://doi.org/10.1073/pnas.1419338111 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Keller S, König AK, Marmé F, Runz S, Wolterink S, Koensgen D, Mustea A, Sehouli J, Altevogt P (2009) Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes. Cancer Lett 278(1):73–81.  https://doi.org/10.1016/j.canlet.2008.12.028 CrossRefPubMedGoogle Scholar
  52. Khan MB, Lang MJ, Huang MB, Raymond A, Bond VC, Shiramizu B, Powell MD (2016) Nef exosomes isolated from the plasma of individuals with HIV-associated dementia (HAD) can induce Aβ(1-42) secretion in SH-SY5Y neural cells. J Neuro-Oncol 22(2):179–190.  https://doi.org/10.1007/s13365-015-0383-6 CrossRefGoogle Scholar
  53. Kirchhoff F, Schindler M, Specht A, Arhel N, Muench J (2008) Role of Nef in primate lentiviral immunopathogenesis. Cell Mol Life Sci 65(17):2621–2636.  https://doi.org/10.1007/s00018-008-8094-2 CrossRefPubMedGoogle Scholar
  54. Kitai Y, Kawasaki T, Sueyoshi T, Kobiyama K, Ishii KJ, Zou J, Akira S, Matsuda T, Kawai T (2017) DNA-containing exosomes derived from Cancer cells treated with Topotecan activate a STING-dependent pathway and reinforce antitumor immunity. J Immunol 198(4):1649–1659.  https://doi.org/10.4049/jimmunol.1601694 CrossRefPubMedGoogle Scholar
  55. Koumangoye RB, Sakwe AM, Goodwin JS, Patel T, Ochieng J (2011) Detachment of breast tumor cells induces rapid secretion of exosomes which subsequently mediate cellular adhesion and spreading. PLoS One 6(9):e24234.  https://doi.org/10.1371/journal.pone.0024234 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Kutner RH, Zhang XY, Reiser J (2009) Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat Protoc 4(4):495–505.  https://doi.org/10.1038/nprot.2009.22 CrossRefPubMedGoogle Scholar
  57. Lamparski HG, Metha-Damani A, Yao JY, Patel S, Hsu DH, Ruegg C, le Pecq JB (2002) Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods 270(2):211–226.  https://doi.org/10.1016/s0022-1759(02)00330-7 CrossRefPubMedGoogle Scholar
  58. Lebreton B, Brown A, van Reis R (2008) Application of high-performance tangential flow filtration (HPTFF) to the purification of a human pharmaceutical antibody fragment expressed in Escherichia coli. Biotechnol Bioeng 100(5):964–974.  https://doi.org/10.1002/bit.21842 CrossRefPubMedGoogle Scholar
  59. Lee JH, Schierer S, Blume K, Dindorf J, Wittki S, Xiang W, Ostalecki C, Koliha N, Wild S, Schuler G, Fackler OT, Saksela K, Harrer T, Baur AS (2016) HIV-Nef and ADAM17-containing plasma extracellular vesicles induce and correlate with immune pathogenesis in chronic HIV infection. EBioMedicine 6:103–113.  https://doi.org/10.1016/j.ebiom.2016.03.004 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Lemon SM, Jansen RW, Newbold JE (1985) Infectious hepatitis A virus particles produced in cell culture consist of three distinct types with different buoyant densities in CsCl. J Virol 54(1):78–85PubMedPubMedCentralGoogle Scholar
  61. Lenassi M, Cagney G, Liao M, Vaupotic T, Bartholomeeusen K, Cheng Y et al (2010) HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic 11(1):110–122.  https://doi.org/10.1111/j.1600-0854.2009.01006.x CrossRefPubMedPubMedCentralGoogle Scholar
  62. Li P, Kaslan M, Lee S, Yao J, Gao Z (2017) Progress in exosome isolation techniques (review). Theranostics 7(3):789–804.  https://doi.org/10.7150/thno.18133 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Lippé R (2018) Flow Virometry: a powerful tool to functionally characterize viruses. J Virol 92(3).  https://doi.org/10.1128/JVI.01765-17
  64. Lobb RJ, Becker M, Wen SW, Wong CS, Wiegmans AP, Leimgruber A et al (2015) Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles 4:27031.  https://doi.org/10.3402/jev.v4.27031 CrossRefPubMedGoogle Scholar
  65. Longatti A, Boyd B, Chisari FV (2015) Virion-independent transfer of replication-competent hepatitis C virus RNA between permissive cells. J Virol 89(5):2956–2961.  https://doi.org/10.1128/JVI.02721-14 CrossRefPubMedGoogle Scholar
  66. Loret S, El Bilali N, Lippé R (2012) Analysis of herpes simplex virus type I nuclear particles by flow cytometry. Cytometry A 81(11):950–959.  https://doi.org/10.1002/cyto.a.22107 CrossRefPubMedGoogle Scholar
  67. Lotvall J, Hill AF, Hochberg F, Buzas EI, Di Vizio D, Gardiner C et al (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 3:26913.  https://doi.org/10.3402/jev.v3.26913 CrossRefPubMedGoogle Scholar
  68. Mathieu M, Martin-Jaular L, Lavieu G, Théry C (2019) Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 21(1):9–17.  https://doi.org/10.1038/s41556-018-0250-9 CrossRefPubMedGoogle Scholar
  69. McKnight KL, Xie L, González-López O, Rivera-Serrano EE, Chen X, Lemon SM (2017) Protein composition of the hepatitis A virus quasi-envelope. Proc Natl Acad Sci U S A 114(25):6587–6592.  https://doi.org/10.1073/pnas.1619519114 CrossRefPubMedPubMedCentralGoogle Scholar
  70. McNamara RP, Caro-Vegas CP, Costantini LM, Landis JT, Griffith JD, Damania BA, Dittmer DP (2018a) Large-scale, cross-flow based isolation of highly pure and endocytosis-competent extracellular vesicles. J Extracell Vesicles 7(1):1541396.  https://doi.org/10.1080/20013078.2018.1541396 CrossRefPubMedPubMedCentralGoogle Scholar
  71. McNamara RP, Costantini LM, Myers TA, Schouest B, Maness NJ, Griffith JD, Damania BA, MacLean AG, Dittmer DP (2018b) Nef secretion into extracellular vesicles or exosomes is conserved across human and simian immunodeficiency viruses. MBio 9(1).  https://doi.org/10.1128/mBio.02344-17
  72. McNamara RP, Chugh PE, Bailey A, Costantini LM, Ma Z, Bigi R, Cheves A, Eason AB, Landis JT, Host KM, Xiong J, Griffith JD, Damania B, Dittmer DP (2019) Extracellular vesicles from Kaposi sarcoma-associated herpesvirus lymphoma induce long-term endothelial cell reprogramming. PLoS Pathog 15(2):e1007536.  https://doi.org/10.1371/journal.ppat.1007536 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Meckes DG, Shair KH, Marquitz AR, Kung CP, Edwards RH, Raab-Traub N (2010) Human tumor virus utilizes exosomes for intercellular communication. Proc Natl Acad Sci U S A 107(47):20370–20375.  https://doi.org/10.1073/pnas.1014194107 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Meckes DG, Gunawardena HP, Dekroon RM, Heaton PR, Edwards RH, Ozgur S, Griffith JD, Damania B, Raab-Traub N (2013) Modulation of B-cell exosome proteins by gamma herpesvirus infection. Proc Natl Acad Sci U S A 110(31):E2925–E2933.  https://doi.org/10.1073/pnas.1303906110 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Morales-Kastresana A, Telford B, Musich TA, McKinnon K, Clayborne C, Braig Z, Rosner A, Demberg T, Watson DC, Karpova TS, Freeman GJ, DeKruyff RH, Pavlakis GN, Terabe M, Robert-Guroff M, Berzofsky JA, Jones JC (2017) Labeling extracellular vesicles for nanoscale flow cytometry. Sci Rep 7(1):1878.  https://doi.org/10.1038/s41598-017-01731-2 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Mukhamedova N, Hoang A, Dragoljevic D, Dubrovsky L, Pushkarsky T, Low H, Ditiatkovski M, Fu Y, Ohkawa R, Meikle PJ, Horvath A, Brichacek B, Miller YI, Murphy A, Bukrinsky M, Sviridov D (2019) Exosomes containing HIV protein Nef reorganize lipid rafts potentiating inflammatory response in bystander cells. PLoS Pathog 15(7):e1007907.  https://doi.org/10.1371/journal.ppat.1007907 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Mukherjee K, Ghoshal B, Ghosh S, Chakrabarty Y, Shwetha S, Das S et al (2016) Reversible HuR-microRNA binding controls extracellular export of miR-122 and augments stress response. EMBO Rep 17(8):1184–1203.  https://doi.org/10.15252/embr.201541930 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Muratori C, Cavallin LE, Krätzel K, Tinari A, De Milito A, Fais S et al (2009) Massive secretion by T cells is caused by HIV Nef in infected cells and by Nef transfer to bystander cells. Cell Host Microbe 6(3):218–230.  https://doi.org/10.1016/j.chom.2009.06.009 CrossRefPubMedGoogle Scholar
  79. Musich T, Jones JC, Keele BF, Jenkins LMM, Demberg T, Uldrick TS, Yarchoan R, Robert-Guroff M (2017) Flow virometric sorting and analysis of HIV quasispecies from plasma. JCI Insight 2(4):e90626.  https://doi.org/10.1172/jci.insight.90626 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Narayanan A, Iordanskiy S, Das R, Van Duyne R, Santos S, Jaworski E et al (2013) Exosomes derived from HIV-1-infected cells contain trans-activation response element RNA. J Biol Chem 288(27):20014–20033.  https://doi.org/10.1074/jbc.M112.438895 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Nolan JP, Duggan E (2018) Analysis of individual extracellular vesicles by flow cytometry. Methods Mol Biol 1678:79–92.  https://doi.org/10.1007/978-1-4939-7346-0_5 CrossRefPubMedGoogle Scholar
  82. Onódi Z, Pelyhe C, Terézia Nagy C, Brenner GB, Almási L, Kittel Á, Manček-Keber M, Ferdinandy P, Buzás EI, Giricz Z (2018) Isolation of high-purity extracellular vesicles by the combination of Iodixanol density gradient ultracentrifugation and bind-elute chromatography from blood plasma. Front Physiol 9:1479.  https://doi.org/10.3389/fphys.2018.01479 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Orlando SJ, Nabavi M, Gharakhanian E (2000) Rapid small-scale isolation of SV40 virions and SV40 DNA. J Virol Methods 90(2):109–114CrossRefPubMedGoogle Scholar
  84. Patramool S, Bernard E, Hamel R, Natthanej L, Chazal N, Surasombatpattana P, Ekchariyawat P, Daoust S, Thongrungkiat S, Thomas F, Briant L, Missé D (2013) Isolation of infectious chikungunya virus and dengue virus using anionic polymer-coated magnetic beads. J Virol Methods 193(1):55–61.  https://doi.org/10.1016/j.jviromet.2013.04.016 CrossRefPubMedGoogle Scholar
  85. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MAJ, Hopmans ES, Lindenberg JL, de Gruijl TD, Wurdinger T, Middeldorp JM (2010) Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A 107(14):6328–6333.  https://doi.org/10.1073/pnas.0914843107 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Pereira EA, daSilva LL (2016) HIV-1 Nef: taking control of protein trafficking. Traffic 17(9):976–996.  https://doi.org/10.1111/tra.12412 CrossRefPubMedGoogle Scholar
  87. Peterson MF, Otoc N, Sethi JK, Gupta A, Antes TJ (2015) Integrated systems for exosome investigation. Methods 87:31–45.  https://doi.org/10.1016/j.ymeth.2015.04.015 CrossRefPubMedGoogle Scholar
  88. Raab-Traub N, Dittmer DP (2017) Viral effects on the content and function of extracellular vesicles. Nat Rev Microbiol 15(9):559–572.  https://doi.org/10.1038/nrmicro.2017.60 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Ramakrishnaiah V, Thumann C, Fofana I, Habersetzer F, Pan Q, de Ruiter PE, Willemsen R, Demmers JAA, Stalin Raj V, Jenster G, Kwekkeboom J, Tilanus HW, Haagmans BL, Baumert TF, van der Laan LJW (2013) Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells. Proc Natl Acad Sci U S A 110(32):13109–13113.  https://doi.org/10.1073/pnas.1221899110 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Raymond AD, Diaz P, Chevelon S, Agudelo M, Yndart-Arias A, Ding H, Kaushik A, Jayant RD, Nikkhah-Moshaie R, Roy U, Pilakka-Kanthikeel S, Nair MP (2016) Microglia-derived HIV Nef+ exosome impairment of the blood-brain barrier is treatable by nanomedicine-based delivery of Nef peptides. J Neuro-Oncol 22(2):129–139.  https://doi.org/10.1007/s13365-015-0397-0 CrossRefGoogle Scholar
  91. Reimer CB, Baker RS, Newlin TE, Havens ML (1966) Influenza virus purification with the zonal ultracentrifuge. Science 152(3727):1379–1381CrossRefPubMedGoogle Scholar
  92. Reimer CB, Baker RS, Van Frank RM, Newlin TE, Cline GB, Anderson NG (1967) Purification of large quantities of influenza virus by density gradient centrifugation. J Virol 1(6):1207–1216PubMedPubMedCentralGoogle Scholar
  93. Reiner AT, Witwer KW, van Balkom BWM, de Beer J, Brodie C, Corteling RL, Gabrielsson S, Gimona M, Ibrahim AG, de Kleijn D, Lai CP, Lötvall J, del Portillo HA, Reischl IG, Riazifar M, Salomon C, Tahara H, Toh WS, Wauben MHM, Yang VK, Yang Y, Yeo RWY, Yin H, Giebel B, Rohde E, Lim SK (2017) Concise review: developing best-practice models for the therapeutic use of extracellular vesicles. Stem Cells Transl Med 6(8):1730–1739.  https://doi.org/10.1002/sctm.17-0055 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Reiter K, Aguilar PP, Wetter V, Steppert P, Tover A, Jungbauer A (2018) Separation of virus-like particles and extracellular vesicles by flow-through and heparin affinity chromatography. J Chromatogr A 1588:77–84.  https://doi.org/10.1016/j.chroma.2018.12.035 CrossRefPubMedGoogle Scholar
  95. Ren Y, Yang J, Xie R, Gao L, Yang Y, Fan H, Qian K (2011) Exosomal-like vesicles with immune-modulatory features are present in human plasma and can induce CD4+ T-cell apoptosis in vitro. Transfusion 51(5):1002–1011.  https://doi.org/10.1111/j.1537-2995.2010.02909.x CrossRefPubMedGoogle Scholar
  96. Rider MA, Hurwitz SN, Meckes DG Jr (2016) ExtraPEG: A polyethylene glycol-based method for enrichment of extracellular vesicles. Sci Rep 6:23978.  https://doi.org/10.1038/srep23978 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Rivera-Serrano EE, González-López O, Das A, Lemon SM (2019) Cellular entry and uncoating of naked and quasi-enveloped human hepatoviruses. Elife 8.  https://doi.org/10.7554/eLife.43983
  98. Rodrigues M, Fan J, Lyon C, Wan M, Hu Y (2018) Role of extracellular vesicles in viral and bacterial infections: pathogenesis, diagnostics, and therapeutics. Theranostics 8(10):2709–2721.  https://doi.org/10.7150/thno.20576 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Sakudo A, Onodera T (2012) Virus capture using anionic polymer-coated magnetic beads (review). Int J Mol Med 30(1):3–7.  https://doi.org/10.3892/ijmm.2012.962 CrossRefPubMedGoogle Scholar
  100. Sakudo A, Baba K, Tsukamoto M, Sugimoto A, Okada T, Kobayashi T, Kawashita N, Takagi T, Ikuta K (2009) Anionic polymer, poly(methyl vinyl ether-maleic anhydride)-coated beads-based capture of human influenza A and B virus. Bioorg Med Chem 17(2):752–757.  https://doi.org/10.1016/j.bmc.2008.11.046 CrossRefPubMedGoogle Scholar
  101. Sakudo A, Baba K, Ikuta K (2016) Capturing and concentrating adenovirus using magnetic anionic nanobeads. Int J Nanomedicine 11:1847–1857.  https://doi.org/10.2147/IJN.S104926 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Sami Saribas A, Cicalese S, Ahooyi TM, Khalili K, Amini S, Sariyer IK (2017) HIV-1 Nef is released in extracellular vesicles derived from astrocytes: evidence for Nef-mediated neurotoxicity. Cell Death Dis 8(1):e2542.  https://doi.org/10.1038/cddis.2016.467 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Sampey GC, Saifuddin M, Schwab A, Barclay R, Punya S, Chung MC, Hakami RM, Asad Zadeh M, Lepene B, Klase ZA, el-Hage N, Young M, Iordanskiy S, Kashanchi F (2016) Exosomes from HIV-1-infected cells stimulate production of pro-inflammatory cytokines through trans-activating response (TAR) RNA. J Biol Chem 291(3):1251–1266.  https://doi.org/10.1074/jbc.M115.662171 CrossRefPubMedGoogle Scholar
  104. Sellhorn G, Caldwell Z, Mineart C, Stamatatos L (2009) Improving the expression of recombinant soluble HIV envelope glycoproteins using pseudo-stable transient transfection. Vaccine 28(2):430–436.  https://doi.org/10.1016/j.vaccine.2009.10.028 CrossRefPubMedGoogle Scholar
  105. Smith JA, Daniel R (2016) Human vaginal fluid contains exosomes that have an inhibitory effect on an early step of the HIV-1 life cycle. AIDS 30(17):2611–2616.  https://doi.org/10.1097/QAD.0000000000001236 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Soares Martins T, Catita J, Martins Rosa I, da Cruz AB, Silva EO, Henriques AG (2018) Exosome isolation from distinct biofluids using precipitation and column-based approaches. PLoS One 13(6):e0198820.  https://doi.org/10.1371/journal.pone.0198820 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Stoorvogel W, Kleijmeer MJ, Geuze HJ, Raposo G (2002) The biogenesis and functions of exosomes. Traffic 3(5):321–330.  https://doi.org/10.1034/j.1600-0854.2002.30502.x CrossRefPubMedGoogle Scholar
  108. Stranska R, Gysbrechts L, Wouters J, Vermeersch P, Bloch K, Dierickx D, Andrei G, Snoeck R (2018) Comparison of membrane affinity-based method with size-exclusion chromatography for isolation of exosome-like vesicles from human plasma. J Transl Med 16(1):1.  https://doi.org/10.1186/s12967-017-1374-6 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Sugita Y, Noda T, Sagara H, Kawaoka Y (2011) Ultracentrifugation deforms unfixed influenza A virions. J Gen Virol 92(Pt 11):2485–2493.  https://doi.org/10.1099/vir.0.036715-0 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Tang VA, Renner TM, Varette O, Le Boeuf F, Wang J, Diallo JS et al (2016) Single-particle characterization of oncolytic vaccinia virus by flow virometry. Vaccine 34(42):5082–5089.  https://doi.org/10.1016/j.vaccine.2016.08.074 CrossRefPubMedGoogle Scholar
  111. Tang VA, Renner TM, Fritzsche AK, Burger D, Langlois MA (2017) Single-particle discrimination of retroviruses from extracellular vesicles by nanoscale flow cytometry. Sci Rep 7(1):17769.  https://doi.org/10.1038/s41598-017-18227-8 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM, Simpson RJ (2012) Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56(2):293–304.  https://doi.org/10.1016/j.ymeth.2012.01.002 CrossRefPubMedGoogle Scholar
  113. Thery C, Boussac M, Veron P, Ricciardi-Castagnoli P, Raposo G, Garin J et al (2001) Proteomic analysis of dendritic cell-derived exosomes: A secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 166(12):7309–7318CrossRefPubMedGoogle Scholar
  114. Théry C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2(8):569–579.  https://doi.org/10.1038/nri855 CrossRefPubMedGoogle Scholar
  115. Théry C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol, chapter 3, unit 3.22.  https://doi.org/10.1002/0471143030.cb0322s30
  116. Théry, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantsitohaina, R., Antoniou A., Arab T., Archer F., Atkin-Smith G. K., Ayre D. C., Bach J.M., Bachurski D., Baharvand H., Balaj L., Baldacchino S., Bauer N. N., Baxter A. A., Bebawy M., Beckham C., Bedina Zavec A., Benmoussa A., Berardi A. C., Bergese P., Bielska E., Blenkiron C., Bobis-Wozowicz S., Boilard E., Boireau W., Bongiovanni A., Borràs F. E., Bosch S., Boulanger C. M., Breakefield X., Breglio A. M., Brennan M. Á., Brigstock D. R., Brisson A., Broekman M. L.D., Bromberg J. F., Bryl-Górecka P., Buch S., Buck A. H., Burger D., Busatto S., Buschmann D., Bussolati B., Buzás E. I., Byrd J. B., Camussi G., Carter D. R.F., Caruso S., Chamley L. W., Chang Y.T., Chen C., Chen S., Cheng L., Chin A. R., Clayton A., Clerici S. P., Cocks A., Cocucci E., Coffey R. J., Cordeiro-da-Silva A., Couch Y., Coumans F. A.W., Coyle B., Crescitelli R., Criado M. F., D’Souza-Schorey C., Das S., Datta Chaudhuri A., de Candia P., de Santana Jr E. F., de Wever O., del Portillo H. A., Demaret T., Deville S., Devitt A., Dhondt B., di Vizio D., Dieterich L. C., Dolo V., Dominguez Rubio A. P., Dominici M., Dourado M. R., Driedonks T. A.P., Duarte F. V., Duncan H. M., Eichenberger R. M., Ekström K., el Andaloussi S., Elie-Caille C., Erdbrügger U., Falcón-Pérez J. M., Fatima F., Fish J. E., Flores-Bellver M., Försönits A., Frelet-Barrand A., Fricke F., Fuhrmann G., Gabrielsson S., Gámez-Valero A., Gardiner C., Gärtner K., Gaudin R., Gho Y. S., Giebel B., Gilbert C., Gimona M., Giusti I., Goberdhan D. C.I., Görgens A., Gorski S. M., Greening D. W., Gross J. C., Gualerzi A., Gupta G. N., Gustafson D., Handberg A., Haraszti R. A., Harrison P., Hegyesi H., Hendrix A., Hill A. F., Hochberg F. H., Hoffmann K. F., Holder B., Holthofer H., Hosseinkhani B., Hu G., Huang Y., Huber V., Hunt S., Ibrahim A. G.E., Ikezu T., Inal J. M., Isin M., Ivanova A., Jackson H. K., Jacobsen S., Jay S. M., Jayachandran M., Jenster G., Jiang L., Johnson S. M., Jones J. C., Jong A., Jovanovic-Talisman T., Jung S., Kalluri R., Kano S.I., Kaur S., Kawamura Y., Keller E. T., Khamari D., Khomyakova E., Khvorova A., Kierulf P., Kim K. P., Kislinger T., Klingeborn M., Klinke II D. J., Kornek M., Kosanović M. M., Kovács Á. F., Krämer-Albers E.M., Krasemann S., Krause M., Kurochkin I. V., Kusuma G. D., Kuypers S., Laitinen S., Langevin S. M., Languino L. R., Lannigan J., Lässer C., Laurent L. C., Lavieu G., Lázaro-Ibáñez E., le Lay S., Lee M.S., Lee Y. X. F., Lemos D. S., Lenassi M., Leszczynska A., Li I. T.S., Liao K., Libregts S. F., Ligeti E., Lim R., Lim S. K., Linē A., Linnemannstöns K., Llorente A., Lombard C. A., Lorenowicz M. J., Lörincz Á. M., Lötvall J., Lovett J., Lowry M. C., Loyer X., Lu Q., Lukomska B., Lunavat T. R., Maas S. L.N., Malhi H., Marcilla A., Mariani J., Mariscal J., Martens-Uzunova E. S., Martin-Jaular L., Martinez M. C., Martins V. R., Mathieu M., Mathivanan S., Maugeri M., McGinnis L. K., McVey M. J., Meckes Jr D. G., Meehan K. L., Mertens I., Minciacchi V. R., Möller A., Møller Jørgensen M., Morales-Kastresana A., Morhayim J., Mullier F., Muraca M., Musante L., Mussack V., Muth D. C., Myburgh K. H., Najrana T., Nawaz M., Nazarenko I., Nejsum P., Neri C., Neri T., Nieuwland R., Nimrichter L., Nolan J. P., Nolte-’t Hoen E. N.M., Noren Hooten N., O’Driscoll L., O’Grady T., O’Loghlen A., Ochiya T., Olivier M., Ortiz A., Ortiz L. A., Osteikoetxea X., Østergaard O., Ostrowski M., Park J., Pegtel D. M., Peinado H., Perut F., Pfaffl M. W., Phinney D. G., Pieters B. C.H., Pink R. C., Pisetsky D. S., Pogge von Strandmann E., Polakovicova I., Poon I. K.H., Powell B. H., Prada I., Pulliam L., Quesenberry P., Radeghieri A., Raffai R. L., Raimondo S., Rak J., Ramirez M. I., Raposo G., Rayyan M. S., Regev-Rudzki N., Ricklefs F. L., Robbins P. D., Roberts D. D., Rodrigues S. C., Rohde E., Rome S., Rouschop K. M.A., Rughetti A., Russell A. E., Saá P., Sahoo S., Salas-Huenuleo E., Sánchez C., Saugstad J. A., Saul M. J., Schiffelers R. M., Schneider R., Schøyen T. H., Scott A., Shahaj E., Sharma S., Shatnyeva O., Shekari F., Shelke G. V., Shetty A. K., Shiba K., Siljander P. R.M., Silva A. M., Skowronek A., Snyder II O. L., Soares R. P., Sódar B. W., Soekmadji C., Sotillo J., Stahl P. D., Stoorvogel W., Stott S. L., Strasser E. F., Swift S., Tahara H., Tewari M., Timms K., Tiwari S., Tixeira R., Tkach M., Toh W. S., Tomasini R., Torrecilhas A. C., Tosar J. P., Toxavidis V., Urbanelli L., Vader P., van Balkom B. W.M., van der Grein S. G., van Deun J., van Herwijnen M. J.C., van Keuren-Jensen K., van Niel G., van Royen M. E., van Wijnen A. J., Vasconcelos M. H., Vechetti Jr I. J., Veit T. D., Vella L. J., Velot É., Verweij F. J., Vestad B., Viñas J. L., Visnovitz T., Vukman K. V., Wahlgren J., Watson D. C., Wauben M. H.M., Weaver A., Webber J. P., Weber V., Wehman A. M., Weiss D. J., Welsh J. A., Wendt S., Wheelock A. M., Wiener Z., Witte L., Wolfram J., Xagorari A., Xander P., Xu J., Yan X., Yáñez-Mó M., Yin H., Yuana Y., Zappulli V., Zarubova J., Žėkas V., Zhang J.Y., Zhao Z., Zheng L., Zheutlin A. R., Zickler A. M., Zimmermann P., Zivkovic A. M., Zocco D., Zuba-Surma E. K. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles, 7(1), 1535750.  https://doi.org/10.1080/20013078.2018.1535750
  117. Trus BL, Heymann JB, Nealon K, Cheng N, Newcomb WW, Brown JC, Kedes DH, Steven AC (2001) Capsid structure of Kaposi's sarcoma-associated herpesvirus, a gammaherpesvirus, compared to those of an alphaherpesvirus, herpes simplex virus type 1, and a betaherpesvirus, cytomegalovirus. J Virol 75(6):2879–2890.  https://doi.org/10.1128/JVI.75.6.2879-2890.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Vader P, Breakefield XO, Wood MJ (2014) Extracellular vesicles: emerging targets for cancer therapy. Trends Mol Med 20(7):385–393.  https://doi.org/10.1016/j.molmed.2014.03.002 CrossRefPubMedPubMedCentralGoogle Scholar
  119. van der Pol E, de Rond L, Coumans FAW, Gool EL, Böing AN, Sturk A, Nieuwland R, van Leeuwen TG (2018) Absolute sizing and label-free identification of extracellular vesicles by flow cytometry. Nanomedicine 14(3):801–810.  https://doi.org/10.1016/j.nano.2017.12.012 CrossRefPubMedGoogle Scholar
  120. Verweij FJ, van Eijndhoven MA, Hopmans ES, Vendrig T, Wurdinger T, Cahir-McFarland E et al (2011) LMP1 association with CD63 in endosomes and secretion via exosomes limits constitutive NF-κB activation. EMBO J 30(11):2115–2129.  https://doi.org/10.1038/emboj.2011.123 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Wang Z, Deng Z, Dahmane N, Tsai K, Wang P, Williams DR, Kossenkov AV, Showe LC, Zhang R, Huang Q, Conejo-Garcia JR, Lieberman PM (2015) Telomeric repeat-containing RNA (TERRA) constitutes a nucleoprotein component of extracellular inflammatory exosomes. Proc Natl Acad Sci U S A 112(46):E6293–E6300.  https://doi.org/10.1073/pnas.1505962112 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Webber J, Clayton A (2013) How pure are your vesicles? J Extracell Vesicles 2.  https://doi.org/10.3402/jev.v2i0.19861
  123. Webber JP, Spary LK, Sanders AJ, Chowdhury R, Jiang WG, Steadman R, Wymant J, Jones AT, Kynaston H, Mason MD, Tabi Z, Clayton A (2015) Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene 34(3):290–302.  https://doi.org/10.1038/onc.2013.560 CrossRefPubMedGoogle Scholar
  124. Welton JL, Webber JP, Botos LA, Jones M, Clayton A (2015) Ready-made chromatography columns for extracellular vesicle isolation from plasma. J Extracell Vesicles 4:27269.  https://doi.org/10.3402/jev.v4.27269 CrossRefPubMedGoogle Scholar
  125. Wickramasinghe SR, Kalbfuss B, Zimmermann A, Thom V, Reichl U (2005) Tangential flow microfiltration and ultrafiltration for human influenza A virus concentration and purification. Biotechnol Bioeng 92(2):199–208.  https://doi.org/10.1002/bit.20599 CrossRefPubMedGoogle Scholar
  126. Willms E, Johansson HJ, Mäger I, Lee Y, Blomberg KE, Sadik M et al (2016) Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep 6:22519.  https://doi.org/10.1038/srep22519 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Willms E, Cabañas C, Mäger I, Wood MJA, Vader P (2018) Extracellular vesicle heterogeneity: subpopulations, isolation techniques, and diverse functions in Cancer progression. Front Immunol 9:738.  https://doi.org/10.3389/fimmu.2018.00738 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J, Nolte-‘t Hoen EN, Piper MG, Sivaraman S, Skog J, Théry C, Wauben MH, Hochberg F (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2.  https://doi.org/10.3402/jev.v2i0.20360
  129. Wu AY, Ueda K, Lai CP (2019) Proteomic analysis of extracellular vesicles for Cancer diagnostics. Proteomics 19(1–2):e1800162.  https://doi.org/10.1002/pmic.201800162 CrossRefPubMedGoogle Scholar
  130. Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW, Simpson RJ (2018) Extracellular vesicles in cancer - implications for future improvements in cancer care. Nat Rev Clin Oncol 15(10):617–638.  https://doi.org/10.1038/s41571-018-0036-9 CrossRefPubMedGoogle Scholar
  131. Yogev O, Henderson S, Hayes MJ, Marelli SS, Ofir-Birin Y, Regev-Rudzki N, Herrero J, Enver T (2017) Herpesviruses shape tumour microenvironment through exosomal transfer of viral microRNAs. PLoS Pathog 13(8):e1006524.  https://doi.org/10.1371/journal.ppat.1006524 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Zhao H, Yang L, Baddour J, Achreja A, Bernard V, Moss T, Marini JC, Tudawe T, Seviour EG, San Lucas FA, Alvarez H, Gupta S, Maiti SN, Cooper L, Peehl D, Ram PT, Maitra A, Nagrath D (2016) Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. Elife 5:e10250.  https://doi.org/10.7554/eLife.10250 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Zhao M, Nanbo A, Sun L, Lin Z (2019) Extracellular vesicles in Epstein-Barr Virus' life cycle and pathogenesis. Microorganisms 7(2).  https://doi.org/10.3390/microorganisms7020048

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Lineberger Comprehensive Cancer Center, Department of Microbiology and ImmunologyThe University of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations