Journal of Neuroimmune Pharmacology

, Volume 14, Issue 1, pp 68–93 | Cite as

Current and Future Therapeutic Strategies for Lentiviral Eradication from Macrophage Reservoirs

  • Tiffany A. Peterson
  • Andrew G. MacLeanEmail author


Macrophages, one of the most abundant populations of leukocytes in the body, function as the first line of defense against pathogen invaders. Human Immunodeficiency virus 1 (HIV-1) remains to date one of the most extensively studied viral infections. Naturally occurring lentiviruses in domestic and primate species serve as valuable models to investigate lentiviral pathogenesis and novel therapeutics. Better understanding of the role macrophages play in HIV pathogenesis will aid in the advancement towards a cure. Even with current efficacy of first- and second-line Antiretroviral Therapy (ART) guidelines and future efficacy of Long Acting Slow Effective Release-ART (LASER-ART); ART alone does not lead to a cure. The major challenge of HIV eradication is viral latency. Latency Reversal Agents (LRAs) show promise as a possible means to eradicate HIV-1 from the body. It has become evident that complete eradication will need to include combinations of various effective therapeutic strategies such as LASER-ART, LRAs, and gene editing. Review of the current literature indicates the most promising HIV eradication strategy appears to be LASER-ART in conjunction with viral and receptor gene modifications via the CRISPR/Cas9 system.

Graphical abstract

A multimodal approach to HIV treatment including gene editing, LASER-ART, and latency reversal agents may provide a means to achieve HIV eradication.


Macrophages Lentiviruses HIV Antiretroviral therapy Latency reversal agents CRISPR/Cas9 Eradication 


Funding information

OD11104, NS104016, MH113517 and a Ruth L. Kirschstein National Research Service Award (5T32OD011124-13) from Tulane University of Louisiana.

Compliance with ethical standards

Conflict of Interest

Dr. Tiffany A. Peterson declares that she has no conflict of interest. Dr. Andrew G. MacLean declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Andersen JL, Le Rouzic E, Planelles V (2008) HIV-1 Vpr: Mechanisms of G2 arrest and apoptosis. Exp Mol Pathol 85:2–10. PubMedPubMedCentralGoogle Scholar
  2. Archin NM, Espeseth A, Parker D, Cheema M, Hazuda D, Margolis DM (2009) Expression of Latent HIV Induced by the Potent HDAC Inhibitor Suberoylanilide Hydroxamic Acid. AIDS Res Hum Retrovir 25:207–212. PubMedGoogle Scholar
  3. Archin NM, Liberty AL, Kashuba AD, Choudhary SK, Kuruc JD, Crooks AM, Parker DC, Anderson EM, Kearney MF, Strain MC, Richman DD, Hudgens MG, Bosch RJ, Coffin JM, Eron JJ, Hazuda DJ, Margolis DM (2012) Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487:482–485. PubMedPubMedCentralGoogle Scholar
  4. Archin NM, Kirchherr JL, Sung JA, Clutton G, Sholtis K, Xu Y, Allard B, Stuelke E, Kashuba AD, Kuruc JD, Eron J, Gay CL, Goonetilleke N, Margolis DM (2017) Interval dosing with the HDAC inhibitor vorinostat effectively reverses HIV latency. J Clin Invest 127:3126–3135. PubMedPubMedCentralGoogle Scholar
  5. Avettand-Fènoël V, Hocqueloux L, Ghosn J, Cheret A, Frange P, Melard A, Viard J-P, Rouzioux C (2016) Total HIV-1 DNA, a Marker of Viral Reservoir Dynamics with Clinical Implications. Clin Microbiol Rev 29:859–880. PubMedPubMedCentralGoogle Scholar
  6. Bardhi A, Wu Y, Chen W, Li W, Zhu Z, Zheng JH, Wong H, Jeng E, Jones J, Ochsenbauer C, Kappes JC, Dimitrov DS, Ying T, Goldstein H (2017) Potent In Vivo NK Cell-Mediated Elimination of HIV-1-Infected Cells Mobilized by a gp120-Bispecific and Hexavalent Broadly Neutralizing Fusion Protein. J Virol 91:e00937–e00917. PubMedPubMedCentralGoogle Scholar
  7. Bartholomeeusen K, Xiang Y, Fujinaga K, Peterlin BM (2012) Bromodomain and extra-terminal (BET) bromodomain inhibition activate transcription via transient release of positive transcription elongation factor b (P-TEFb) from 7SK small nuclear ribonucleoprotein. J Biol Chem 287:36609–36616. PubMedPubMedCentralGoogle Scholar
  8. Bashiri K, Rezaei N, Nasi M, Cossarizza A (2018) The role of latency reversal agents in the cure of HIV: A review of current data. Immunol Lett 196:135–139. PubMedGoogle Scholar
  9. Baxter AE, Russell RA, Duncan CJA, Moore MD, Willberg CB, Pablos JL, Finzi A, Kaufmann DE, Ochsenbauer C, Kappes JC, Groot F, Sattentau QJ (2014) Macrophage infection via selective capture of HIV-1-infected CD4+ T cells. Cell Host Microbe 16:711–721. PubMedPubMedCentralGoogle Scholar
  10. Baxter AE, O’Doherty U, Kaufmann DE (2018) Beyond the replication-competent HIV reservoir: transcription and translation-competent reservoirs. Retrovirology 15.
  11. Bhatia S, Patil SS, Sood R (2013) Bovine immunodeficiency virus: a lentiviral infection. Indian J Virol 24:332–341. PubMedPubMedCentralGoogle Scholar
  12. Blacklaws BA (2012) Small ruminant lentiviruses: Immunopathogenesis of visna-maedi and caprine arthritis and encephalitis virus. Comp Immunol Microbiol Infect Dis 35:259–269. PubMedGoogle Scholar
  13. Boyer PL, Smith SJ, Zhao XZ, Das K, Gruber K, Arnold E, Burke TR, Hughes SH (2018) Developing and evaluating inhibitors against the RNase H active site of HIV-1 RT. J Virol JVI:02203–02217.
  14. Bragg DC, Childers TA, Tompkins MB, Tompkins WA, Meeker RB (2002a) Infection of the choroid plexus by feline immunodeficiency virus. J Neuro-Oncol 8:211–224. Google Scholar
  15. Bragg DC, Hudson LC, Liang YH, Tompkins MB, Fernandes A, Meeker RB (2002b) Choroid plexus macrophages proliferate and release toxic factors in response to feline immunodeficiency virus. J Neuro-Oncol 8:225–239. Google Scholar
  16. Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, Lieberman J, Elledge SJ (2008) Identification of host proteins required for HIV infection through a functional genomic screen. Science 319:921–926. PubMedGoogle Scholar
  17. Bullen CK, Laird GM, Durand CM, Siliciano JD, Siliciano RF (2014) New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nat Med 20:425–429. PubMedPubMedCentralGoogle Scholar
  18. Burugu S, Daher A, Meurs EF, Gatignol A (2014) HIV-1 translation and its regulation by cellular factors PKR and PACT. Virus Res 193:65–77. PubMedGoogle Scholar
  19. Calcagno A, Barco A, Trunfio M, Bonora S (2018) CNS-Targeted Antiretroviral Strategies: When Are They Needed and What to Choose. Curr HIV/AIDS Rep 15:84–91. PubMedGoogle Scholar
  20. Campbell GR, Spector SA (2013) Inhibition of human immunodeficiency virus type-1 through autophagy. Curr Opin Microbiol 16:349–354. PubMedPubMedCentralGoogle Scholar
  21. Campbell GR, Bruckman RS, Chu Y-L, Spector SA (2015) Autophagy Induction by Histone Deacetylase Inhibitors Inhibits HIV Type 1. J Biol Chem 290:5028–5040. PubMedGoogle Scholar
  22. Campbell GR, Bruckman RS, Herns SD, Joshi S, Durden DL, Spector SA (2018) Induction of autophagy by PI3K/MTOR and PI3K/MTOR/BRD4 inhibitors suppresses HIV-1 replication. J Biol Chem 293:5808–5820. PubMedGoogle Scholar
  23. Casey Klockow L, Sharifi HJ, Wen X, Flagg M, Furuya AKM, Nekorchuk M, de Noronha CMC (2013) The HIV-1 protein Vpr targets the endoribonuclease Dicer for proteasomal degradation to boost macrophage infection. Virology 444:191–202. PubMedGoogle Scholar
  24. Cavrois M, Banerjee T, Mukherjee G, Raman N, Hussien R, Rodriguez BA, Vasquez J, Spitzer MH, Lazarus NH, Jones JJ, Ochsenbauer C, McCune JM, Butcher EC, Arvin AM, Sen N, Greene WC, Roan NR (2017) Mass Cytometric Analysis of HIV Entry, Replication, and Remodeling in Tissue CD4+ T Cells. Cell Rep 20:984–998. PubMedPubMedCentralGoogle Scholar
  25. Chen NC, Partridge AT, Tuzer F, Cohen J, Nacarelli T, Navas-Martín S, Sell C, Torres C, Martín-García J (2018) Induction of a Senescence-Like Phenotype in Cultured Human Fetal Microglia During HIV-1 Infection. J Gerontol Ser A.
  26. Collin M, Bigley V (2018) Human dendritic cell subsets: an update. Immunology.
  27. Costiniuk CT, Jenabian M-A (2014) Cell-to-cell transfer of HIV infection: implications for HIV viral persistence. J Gen Virol 95:2346–2355. PubMedGoogle Scholar
  28. Crespo H, Bertolotti L, Juganaru M, Glaria I, de Andrés D, Amorena B, Rosati S, Reina R (2013) Small ruminant macrophage polarization may play a pivotal role on lentiviral infection. Vet Res 44:83. PubMedPubMedCentralGoogle Scholar
  29. Cummins NW, Badley AD (2014) Making sense of how HIV kills infected CD4 T cells: implications for HIV cure. Mol Cell Ther 2:20. PubMedPubMedCentralGoogle Scholar
  30. Cunyat F, Rainho JN, West B, Swainson L, McCune JM, Stevenson M (2016) Colony-Stimulating Factor 1 Receptor Antagonists Sensitize Human Immunodeficiency Virus Type 1-Infected Macrophages to TRAIL-Mediated Killing. J Virol 90:6255–6262. PubMedPubMedCentralGoogle Scholar
  31. Damouche A, Lazure T, Avettand-Fènoël V, Huot N, Dejucq-Rainsford N, Satie A-P, Mélard A, David L, Gommet C, Ghosn J, Noel N, Pourcher G, Martinez V, Benoist S, Béréziat V, Cosma A, Favier B, Vaslin B, Rouzioux C, Capeau J, Müller-Trutwin M, Dereuddre-Bosquet N, Le Grand R, Lambotte O, Bourgeois C (2015) Adipose Tissue Is a Neglected Viral Reservoir and an Inflammatory Site during Chronic HIV and SIV Infection. PLoS Pathog 11:e1005153. PubMedPubMedCentralGoogle Scholar
  32. Dampier W, Sullivan NT, Chung C-H, Mell JC, Nonnemacher MR, Wigdahl B (2017) Designing broad-spectrum anti-HIV-1 gRNAs to target patient-derived variants. Sci Rep 7:14413. PubMedPubMedCentralGoogle Scholar
  33. Darcis G, Kula A, Bouchat S, Fujinaga K, Corazza F, Ait-Ammar A, Delacourt N, Melard A, Kabeya K, Vanhulle C, Van Driessche B, Gatot J-S, Cherrier T, Pianowski LF, Gama L, Schwartz C, Vila J, Burny A, Clumeck N, Moutschen M, De Wit S, Peterlin BM, Rouzioux C, Rohr O, Van Lint C (2015) An In-Depth Comparison of Latency-Reversing Agent Combinations in Various In Vitro and Ex Vivo HIV-1 Latency Models Identified Bryostatin-1+JQ1 and Ingenol-B+JQ1 to Potently Reactivate Viral Gene Expression. PLoS Pathog 11:e1005063. PubMedPubMedCentralGoogle Scholar
  34. Darcis G, Van Driessche B, Bouchat S, Kirchhoff F, Van Lint C (2017) Molecular Control of HIV and SIV Latency. Springer Berlin Heidelberg, Heidelberg, pp 1–22. Google Scholar
  35. Ding X, Zhang X, Chong H, Zhu Y, Wei H, Wu X, He J, Wang X, He Y (2017) Enfuvirtide (T20)-Based Lipopeptide Is a Potent HIV-1 Cell Fusion Inhibitor: Implications for Viral Entry and Inhibition. J Virol 91.
  36. Du C, Liu H-F, Lin Y-Z, Wang X-F, Ma J, Li Y-J, Wang X, Zhou J-H (2015) Proteomic alteration of equine monocyte-derived macrophages infected with equine infectious anemia virus. PROTEOMICS 15:1843–1858. PubMedGoogle Scholar
  37. Duan L-W, Zhang H, Zhao M-T, Sun J-X, Chen W-L, Lin J-P, Liu X-Q (2017) A non-canonical binding interface in the crystal structure of HIV-1 gp120 core in complex with CD4. Sci Rep 7:46733. PubMedPubMedCentralGoogle Scholar
  38. Duncan CJA, Sattentau QJ (2011) Viral Determinants of HIV-1 Macrophage Tropism. Viruses 3:2255–2279. PubMedPubMedCentralGoogle Scholar
  39. Ebina H, Misawa N, Kanemura Y, Koyanagi Y (2013) Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep 3.
  40. Eckstrand CD, Sparger EE, Murphy BG (2017) Central and peripheral reservoirs of feline immunodeficiency virus in cats: a review. J Gen Virol 98:1985–1996. PubMedGoogle Scholar
  41. Elsa M, Illaria S, Oliver H (2018) Preventing HIV transmission through blockade of CCR5: rationale, progress and perspectives. Swiss Med Wkly 148.
  42. Essandoh K, Li Y, Huo J, Fan G-C (2016) MiRNA-Mediated Macrophage Polarization and its Potential Role in the Regulation of Inflammatory Response. Shock 46:122–131. PubMedPubMedCentralGoogle Scholar
  43. Farnet CM, Haseltine WA (1991) Circularization of human immunodeficiency virus type 1 DNA in vitro. J Virol 65:6942–6952PubMedPubMedCentralGoogle Scholar
  44. Fletcher NF, Bexiga MG, Brayden DJ, Brankin B, Willett BJ, Hosie MJ, Jacque J-M, Callanan JJ (2009) Lymphocyte migration through the blood-brain barrier (BBB) in feline immunodeficiency virus infection is significantly influenced by the pre-existence of virus and tumour necrosis factor (TNF)-alpha within the central nervous system (CNS): studies using an in vitro feline BBB model. Neuropathol Appl Neurobiol 35:592–602. PubMedGoogle Scholar
  45. Gama L, Abreu CM, Shirk EN, Price SL, Li M, Laird GM, Pate KAM, Wietgrefe SW, O’Connor SL, Pianowski L, Haase AT, Van Lint C, Siliciano RF, Clements JE (2017) Reactivation of simian immunodeficiency virus reservoirs in the brain of virally suppressed macaques. AIDS 31:5–14. PubMedGoogle Scholar
  46. Garvey LJ, Pavese N, Politis M, Ramlackhansingh A, Brooks DJ, Taylor-Robinson SD, Winston A (2014) Increased microglia activation in neurologically asymptomatic HIV-infected patients receiving effective ART. AIDS Lond Engl 28:67–72. Google Scholar
  47. Geijtenbeek TB, Krooshoop DJ, Bleijs DA, van Vliet SJ, van Duijnhoven GC, Grabovsky V, Alon R, Figdor CG, van Kooyk Y (2000) DC-SIGN-ICAM-2 interaction mediates dendritic cell trafficking. Nat Immunol 1:353–357. PubMedGoogle Scholar
  48. Ginhoux F, Jung S (2014) Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14:392–404. PubMedGoogle Scholar
  49. Ginhoux F, Prinz M (2015) Origin of microglia: current concepts and past controversies. Cold Spring Harb Perspect Biol 7:a020537. PubMedPubMedCentralGoogle Scholar
  50. Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, Garner H, Trouillet C, de Bruijn MF, Geissmann F, Rodewald H-R (2015) Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518:547–551. PubMedGoogle Scholar
  51. Grant I, Franklin DR, Deutsch R, Woods SP, Vaida F, Ellis RJ, Letendre SL, Marcotte TD, Atkinson JH, Collier AC, Marra CM, Clifford DB, Gelman BB, McArthur JC, Morgello S, Simpson DM, McCutchan JA, Abramson I, Gamst A, Fennema-Notestine C, Smith DM, Heaton RK, CHARTER Group (2014) Asymptomatic HIV-associated neurocognitive impairment increases risk for symptomatic decline. Neurology 82:2055–2062. PubMedPubMedCentralGoogle Scholar
  52. Gray LR, On H, Roberts E, Lu HK, Moso MA, Raison JA, Papaioannou C, Cheng W-J, Ellett AM, Jacobson JC, Purcell DFJ, Wesselingh SL, Gorry PR, Lewin SR, Churchill MJ (2016) Toxicity and in vitro activity of HIV-1 latency-reversing agents in primary CNS cells. J Neuro-Oncol 22:455–463. Google Scholar
  53. Guo H, Ma Y, Gai Y, Liang Z, Ma J, Su Y, Zhang Q, Chen Q, Tan J (2013) Bovine HEXIM1 inhibits bovine immunodeficiency virus replication through regulating BTat-mediated transactivation. Vet Res 44:21. PubMedPubMedCentralGoogle Scholar
  54. Gupta V, Dixit NM (2018) Trade-off between synergy and efficacy in combinations of HIV-1 latency-reversing agents. PLoS Comput Biol 14:e1006004. PubMedPubMedCentralGoogle Scholar
  55. Hamid FB, Kim J, Shin C-G (2017) Distribution and fate of HIV-1 unintegrated DNA species: a comprehensive update. AIDS Res Ther 14.
  56. Harman AN, Nasr N, Feetham A, Galoyan A, Alshehri AA, Rambukwelle D, Botting RA, Hiener BM, Diefenbach E, Diefenbach RJ, Kim M, Mansell A, Cunningham AL (2015) HIV Blocks Interferon Induction in Human Dendritic Cells and Macrophages by Dysregulation of TBK1. J Virol 89:6575–6584. PubMedPubMedCentralGoogle Scholar
  57. Hartmann K (2015) Efficacy of antiviral chemotherapy for retrovirus-infected cats: What does the current literature tell us? J Feline Med Surg 17:925–939. PubMedGoogle Scholar
  58. Herskovitz J, Gendelman HE (2018) HIV and the Macrophage: From Cell Reservoirs to Drug Delivery to Viral Eradication. J NeuroImmune Pharmacol.
  59. Honeycutt JB, Wahl A, Baker C, Spagnuolo RA, Foster J, Zakharova O, Wietgrefe S, Caro-Vegas C, Madden V, Sharpe G, Haase AT, Eron JJ, Garcia JV (2016) Macrophages sustain HIV replication in vivo independently of T cells. J Clin Invest 126:1353–1366. PubMedPubMedCentralGoogle Scholar
  60. Hu W-S, Hughes SH (2012) HIV-1 Reverse Transcription. Cold Spring Harb Perspect Med 2:a006882–a006882. PubMedPubMedCentralGoogle Scholar
  61. Hu Q-Y, Fink E, Elder J (2012) Mapping of Receptor Binding Interactions with the FIV Surface Glycoprotein (SU); Implications Regarding Immune Surveillance and Cellular Targets of Infection. Retrovirology Res Treat:1.
  62. Hu W, Kaminski R, Yang F, Zhang Y, Cosentino L, Li F, Luo B, Alvarez-Carbonell D, Garcia-Mesa Y, Karn J, Mo X, Khalili K (2014) RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci 111:11461–11466. PubMedGoogle Scholar
  63. Huang H, Liu S, Jean M, Simpson S, Huang H, Merkley M, Hayashi T, Kong W, Rodríguez-Sánchez I, Zhang X, Yosief HO, Miao H, Que J, Kobie JJ, Bradner J, Santoso NG, Zhang W, Zhu J (2017) A Novel Bromodomain Inhibitor Reverses HIV-1 Latency through Specific Binding with BRD4 to Promote Tat and P-TEFb Association. Front Microbiol 8:1035. PubMedPubMedCentralGoogle Scholar
  64. Hudson LC, Bragg DC, Tompkins MB, Meeker RB (2005) Astrocytes and microglia differentially regulate trafficking of lymphocyte subsets across brain endothelial cells. Brain Res 1058:148–160. PubMedGoogle Scholar
  65. Huitron-Resendiz S, de Rozieres S, Sanchez-Alavez M, Buhler B, Lin Y-C, Lerner DL, Henriksen NW, Burudi M, Fox HS, Torbett BE, Henriksen S, Elder JH (2004) Resolution and Prevention of Feline Immunodeficiency Virus-Induced Neurological Deficits by Treatment with the Protease Inhibitor TL-3. J Virol 78:4525–4532. PubMedPubMedCentralGoogle Scholar
  66. Igarashi T (2001) Macrophage are the principal reservoir and sustain high virus loads in rhesus macaques after the depletion of CD4+ T cells by a highly pathogenic simian immunodeficiency virus/HIV type 1 chimera (SHIV): Implications for HIV-1 infections of humans. Proc Natl Acad Sci 98:658–663. PubMedGoogle Scholar
  67. Imran M, Waheed Y, Ghazal A, Ullah S, Safi SZ, Jamal M, Ali M, Atif M, Imran M, Ullah F (2017) Modern biotechnology-based therapeutic approaches against HIV infection. Biomed Rep 7:504–507. PubMedPubMedCentralGoogle Scholar
  68. Jakobsdottir GM, Iliopoulou M, Nolan R, Alvarez L, Compton AA, Padilla-Parra S (2017) On the Whereabouts of HIV-1 Cellular Entry and Its Fusion Ports. Trends Mol Med 23:932–944. PubMedGoogle Scholar
  69. Jiang G, Mendes EA, Kaiser P, Wong DP, Tang Y, Cai I, Fenton A, Melcher GP, Hildreth JEK, Thompson GR, Wong JK, Dandekar S (2015) Synergistic Reactivation of Latent HIV Expression by Ingenol-3-Angelate, PEP005, Targeted NF-kB Signaling in Combination with JQ1 Induced p-TEFb Activation. PLoS Pathog 11:e1005066. PubMedPubMedCentralGoogle Scholar
  70. Jin S, Zhang B, Weisz OA, Montelaro RC (2005) Receptor-mediated entry by equine infectious anemia virus utilizes a pH-dependent endocytic pathway. J Virol 79:14489–14497. PubMedPubMedCentralGoogle Scholar
  71. Jones KS, Petrow-Sadowski C, Bertolette DC, Huang Y, Ruscetti FW (2005) Heparan sulfate proteoglycans mediate attachment and entry of human T-cell leukemia virus type 1 virions into CD4+ T cells. J Virol 79:12692–12702. PubMedPubMedCentralGoogle Scholar
  72. Joseph SB, Arrildt KT, Sturdevant CB, Swanstrom R (2015) HIV-1 target cells in the CNS. J Neuro-Oncol 21:276–289. Google Scholar
  73. Kaminski R, Bella R, Yin C, Otte J, Ferrante P, Gendelman HE, Li H, Booze R, Gordon J, Hu W, Khalili K (2016a) Excision of HIV-1 DNA by gene editing: a proof-of-concept in vivo study. Gene Ther 23:690–695. PubMedPubMedCentralGoogle Scholar
  74. Kaminski R, Chen Y, Salkind J, Bella R, Young W, Ferrante P, Karn J, Malcolm T, Hu W, Khalili K (2016b) Negative Feedback Regulation of HIV-1 by Gene Editing Strategy. Sci Rep 6.
  75. Kang H, Minder P, Park MA, Mesquitta W-T, Torbett BE, Slukvin II (2015) CCR5 Disruption in Induced Pluripotent Stem Cells Using CRISPR/Cas9 Provides Selective Resistance of Immune Cells to CCR5-tropic HIV-1 Virus. Mol Ther Nucleic Acids 4:e268. PubMedGoogle Scholar
  76. Kaplon H, Reichert JM (2018) Antibodies to watch in 2018. mAbs 10:183–203. PubMedPubMedCentralGoogle Scholar
  77. Karn J, Stoltzfus CM (2012) Transcriptional and posttranscriptional regulation of HIV-1 gene expression. Cold Spring Harb Perspect Med 2:a006916. PubMedPubMedCentralGoogle Scholar
  78. Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, Salazar MG, Sun C, Grayson T, Wang S, Li H, Wei X, Jiang C, Kirchherr JL, Gao F, Anderson JA, Ping L-H, Swanstrom R, Tomaras GD, Blattner WA, Goepfert PA, Kilby JM, Saag MS, Delwart EL, Busch MP, Cohen MS, Montefiori DC, Haynes BF, Gaschen B, Athreya GS, Lee HY, Wood N, Seoighe C, Perelson AS, Bhattacharya T, Korber BT, Hahn BH, Shaw GM (2008) Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc Natl Acad Sci 105:7552–7557. PubMedGoogle Scholar
  79. Khalili K, Kaminski R, Gordon J, Cosentino L, Hu W (2015) Genome editing strategies: potential tools for eradicating HIV-1/AIDS. J Neuro-Oncol 21:310–321. Google Scholar
  80. Khalili K, White MK, Jacobson JM (2017) Novel AIDS therapies based on gene editing. Cell Mol Life Sci CMLS 74:2439–2450. PubMedGoogle Scholar
  81. Knights HDJ (2017) A Critical Review of the Evidence Concerning the HIV Latency Reversing Effect of Disulfiram, the Possible Explanations for Its Inability to Reduce the Size of the Latent Reservoir In Vivo, and the Caveats Associated with Its Use in Practice. AIDS Res Treat 2017:1–7. Google Scholar
  82. Kollár P, Rajchard J, Balounová Z, Pazourek J (2014) Marine natural products: bryostatins in preclinical and clinical studies. Pharm Biol 52:237–242. PubMedGoogle Scholar
  83. Kondo N, Marin M, Kim JH, Desai TM, Melikyan GB (2015) Distinct Requirements for HIV-Cell Fusion and HIV-mediated Cell-Cell Fusion. J Biol Chem 290:6558–6573. PubMedPubMedCentralGoogle Scholar
  84. Krishnan L, Engelman A (2012) Retroviral Integrase Proteins and HIV-1 DNA Integration. J Biol Chem 287:40858–40866. PubMedPubMedCentralGoogle Scholar
  85. Kumar A, Abbas W, Herbein G (2014) HIV-1 Latency in Monocytes/Macrophages. Viruses 6:1837–1860. PubMedPubMedCentralGoogle Scholar
  86. Kumar A, Darcis G, Van Lint C, Herbein G (2015) Epigenetic control of HIV-1 post integration latency: implications for therapy. Clin Epigenetics 7.
  87. Laird GM, Bullen CK, Rosenbloom DIS, Martin AR, Hill AL, Durand CM, Siliciano JD, Siliciano RF (2015) Ex vivo analysis identifies effective HIV-1 latency-reversing drug combinations. J Clin Invest 125:1901–1912. PubMedPubMedCentralGoogle Scholar
  88. Lebbink RJ, de Jong DCM, Wolters F, Kruse EM, van Ham PM, Wiertz EJHJ, Nijhuis M (2017) A combinational CRISPR/Cas9 gene-editing approach can halt HIV replication and prevent viral escape. Sci Rep 7:41968. PubMedPubMedCentralGoogle Scholar
  89. Leroux C, Cadoré J-L, Montelaro RC (2004) Equine Infectious Anemia Virus (EIAV): what has HIV’s country cousin got to tell us? Vet Res 35:485–512. PubMedGoogle Scholar
  90. Li Z, Guo J, Wu Y, Zhou Q (2013) The BET bromodomain inhibitor JQ1 activates HIV latency through antagonizing Brd4 inhibition of Tat-transactivation. Nucleic Acids Res 41:277–287. PubMedGoogle Scholar
  91. Li W, Wu Y, Kong D, Yang H, Wang Y, Shao J, Feng Y, Chen W, Ma L, Ying T, Dimitrov DS (2017) One-domain CD4 Fused to Human Anti-CD16 Antibody Domain Mediates Effective Killing of HIV-1-Infected Cells. Sci Rep 7.
  92. Liao H-K, Gu Y, Diaz A, Marlett J, Takahashi Y, Li M, Suzuki K, Xu R, Hishida T, Chang C-J, Esteban CR, Young J, Belmonte JCI (2015) Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat Commun 6:6413. PubMedGoogle Scholar
  93. Limsirichai P, Gaj T, Schaffer DV (2016) CRISPR-mediated Activation of Latent HIV-1 Expression. Mol Ther J Am Soc Gene Ther 24:499–507. Google Scholar
  94. Lin Y-Z, Yang F, Zhang S-Q, Sun L-K, Wang X-F, Du C, Zhou J-H (2013) The soluble form of the EIAV receptor encoded by an alternative splicing variant inhibits EIAV infection of target cells. PLoS One 8:e79299. PubMedPubMedCentralGoogle Scholar
  95. Lippincott-Schwartz J, Freed EO, van Engelenburg SB (2017) A Consensus View of ESCRT-Mediated Human Immunodeficiency Virus Type 1 Abscission. Annu Rev Virol 4:309–325. PubMedGoogle Scholar
  96. Liu Q, Wang X-F, Du C, Lin Y-Z, Ma J, Wang Y-H, Zhou J-H, Wang X (2017a) The integration of a macrophage-adapted live vaccine strain of equine infectious anaemia virus (EIAV) in the horse genome. J Gen Virol 98:2596–2606. Google Scholar
  97. Liu Z-J, Bai J, Liu F-L, Zhang X-Y, Wang J-Z (2017b) Focus on the therapeutic efficacy of 3BNC117 against HIV-1: In vitro studies, in vivo studies, clinical trials and challenges. Int Immunopharmacol 52:44–50. PubMedGoogle Scholar
  98. Ma J, Wang S-S, Lin Y-Z, Liu H-F, Liu Q, Wei H-M, Wang X-F, Wang Y-H, Du C, Kong X-G, Zhou J-H, Wang X (2014) Infection of equine monocyte-derived macrophages with an attenuated equine infectious anemia virus (EIAV) strain induces a strong resistance to the infection by a virulent EIAV strain. Vet Res 45:82. PubMedPubMedCentralGoogle Scholar
  99. MacLean AG, Walker E, Sahu GK, Skowron G, Marx P, von Laer D, Junghans RP, Braun SE (2014) A novel real-time CTL assay to measure designer T-cell function against HIV Env(+) cells. J Med Primatol 43:341–348. PubMedPubMedCentralGoogle Scholar
  100. Madrid-Elena N, García-Bermejo ML, Serrano-Villar S, Díaz-de Santiago A, Sastre B, Gutiérrez C, Dronda F, Coronel Díaz M, Domínguez E, López-Huertas MR, Hernández-Novoa B, Moreno S (2018) Maraviroc Is Associated with Latent HIV-1 Reactivation through NF-κB Activation in Resting CD4 + T Cells from HIV-Infected Individuals on Suppressive Antiretroviral Therapy. J Virol 92:e01931–e01917. PubMedCentralGoogle Scholar
  101. Mamik MK, Asahchop EL, Chan WF, Zhu Y, Branton WG, McKenzie BA, Cohen EA, Power C (2016) Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration. J Neurosci 36:10683–10695. PubMedGoogle Scholar
  102. Marban C, Forouzanfar F, Ait-Ammar A, Fahmi F, El Mekdad H, Daouad F, Rohr O, Schwartz C (2016) Targeting the Brain Reservoirs: Toward an HIV Cure. Front Immunol 7.
  103. Martin MP (1998) Genetic Acceleration of AIDS Progression by a Promoter Variant of CCR5. Science 282:1907–1911. PubMedGoogle Scholar
  104. McKernan LN, Momjian D, Kulkosky J (2012) Protein Kinase C: One Pathway towards the Eradication of Latent HIV-1 Reservoirs. Adv Virol 2012:805347. PubMedPubMedCentralGoogle Scholar
  105. Meanwell NA, Krystal MR, Nowicka-Sans B, Langley DR, Conlon DA, Eastgate MD, Grasela DM, Timmins P, Wang T, Kadow JF (2018) Inhibitors of HIV-1 Attachment: The Discovery and Development of Temsavir and its Prodrug Fostemsavir. J Med Chem 61:62–80. PubMedGoogle Scholar
  106. Meeker R, Hudson L (2017) Feline Immunodeficiency Virus Neuropathogenesis: A Model for HIV-Induced CNS Inflammation and Neurodegeneration. Vet Sci 4:14. PubMedCentralGoogle Scholar
  107. Meeker RB, Poulton W, Feng W, Hudson L, Longo FM (2012) Suppression of Immunodeficiency Virus-Associated Neural Damage by the p75 Neurotrophin Receptor Ligand, LM11A-31, in an In Vitro Feline Model. J NeuroImmune Pharmacol 7:388–400. PubMedGoogle Scholar
  108. Meintjes G, Moorhouse MA, Carmona S, Davies N, Dlamini S, Van Vuuren C, Manzini T, Mathe M, Moosa Y, Nash J, Nel J, Pakade Y, Woods J, Van Zyl G, Conradie F, Venter F (2017) Adult antiretroviral therapy guidelines 2017. South Afr J HIV Med 18.
  109. Meltzer MS, Nakamura M, Hansen BD, Turpin JA, Kalter DC, Gendelman HE (1990) Macrophages as susceptible targets for HIV infection, persistent viral reservoirs in tissue, and key immunoregulatory cells that control levels of virus replication and extent of disease. AIDS Res Hum Retrovir 6:967–971. PubMedGoogle Scholar
  110. Mercer J, Greber UF (2013) Virus interactions with endocytic pathways in macrophages and dendritic cells. Trends Microbiol 21:380–388. PubMedGoogle Scholar
  111. Merino KM, Allers C, Didier ES, Kuroda MJ (2017) Role of Monocyte/Macrophages during HIV/SIV Infection in Adult and Pediatric Acquired Immune Deficiency Syndrome. Front Immunol 8.
  112. Messiaen P, Wensing AMJ, Fun A, Nijhuis M, Brusselaers N, Vandekerckhove L (2013) Clinical Use of HIV Integrase Inhibitors: A Systematic Review and Meta-Analysis. PLoS One 8:e52562. PubMedPubMedCentralGoogle Scholar
  113. Micci L, Alvarez X, Iriele RI, Ortiz AM, Ryan ES, McGary CS, Deleage C, McAtee BB, He T, Apetrei C, Easley K, Pahwa S, Collman RG, Derdeyn CA, Davenport MP, Estes JD, Silvestri G, Lackner AA, Paiardini M (2014) CD4 Depletion in SIV-Infected Macaques Results in Macrophage and Microglia Infection with Rapid Turnover of Infected Cells. PLoS Pathog 10:e1004467. PubMedPubMedCentralGoogle Scholar
  114. Miyauchi K, Kim Y, Latinovic O, Morozov V, Melikyan GB (2009) HIV Enters Cells via Endocytosis and Dynamin-Dependent Fusion with Endosomes. Cell 137:433–444. PubMedPubMedCentralGoogle Scholar
  115. Moghaddam AS, Mohammadian S, Vazini H, Taghadosi M, Esmaeili S-A, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A (2018) Macrophage plasticity, polarization and function in health and disease: Macrophages in Health and Disease. J Cell Physiol.
  116. Montenegro-Burke JR, Woldstad CJ, Fang M, Bade AN, McMillan J, Edagwa B, Boska MD, Gendelman HE, Siuzdak G (2018) Nanoformulated Antiretroviral Therapy Attenuates Brain Metabolic Oxidative Stress. Mol Neurobiol.
  117. Mowat AM, Scott CL, Bain CC (2017) Barrier-tissue macrophages: functional adaptation to environmental challenges. Nat Med 23:1258–1270. PubMedGoogle Scholar
  118. Narayan O, Clements JE (1989) Biology and pathogenesis of lentiviruses. J Gen Virol 70(Pt 7):1617–1639. PubMedGoogle Scholar
  119. Norkin LC (1995) Virus receptors: implications for pathogenesis and the design of antiviral agents. Clin Microbiol Rev 8:293–315PubMedPubMedCentralGoogle Scholar
  120. Ohlmann T, Mengardi C, López-Lastra M (2014) Translation initiation of the HIV-1 mRNA. Translation 2:e960242. PubMedPubMedCentralGoogle Scholar
  121. Olson WC, Jacobson JM (2009) CCR5 monoclonal antibodies for HIV-1 therapy: Curr. Opin. HIV AIDS 4:104–111. PubMedGoogle Scholar
  122. Pace C, Markowitz M (2015) Monoclonal antibodies to host cellular receptors for the treatment and prevention of HIV-1 infection: Curr. Opin. HIV AIDS 10:144–150. PubMedGoogle Scholar
  123. Panel on Antiretroviral Guidelines for Adults and Adolescents, 2018. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents Living with HIV. Department of Health and Human Services.
  124. Peterson CW, Kiem H-P (2017) Cell and Gene Therapy for HIV Cure. Curr Top Microbiol Immunol.
  125. Pham HT, Mesplède T (2018) The latest evidence for possible HIV-1 curative strategies. Drugs Context 7:212522. PubMedPubMedCentralGoogle Scholar
  126. Power C (2018) Neurologic disease in feline immunodeficiency virus infection: disease mechanisms and therapeutic interventions for NeuroAIDS. J Neuro-Oncol 24:220–228. Google Scholar
  127. Puglisi EV, Puglisi JD (2011) Secondary Structure of the HIV Reverse Transcription Initiation Complex by NMR. J Mol Biol 410:863–874. PubMedPubMedCentralGoogle Scholar
  128. Pujantell M, Badia R, Ramirez C, Puig T, Clotet B, Ballana E, Esté JA, Riveira-Muñoz E (2016) Long-term HIV-1 infection induces an antiviral state in primary macrophages. Antivir Res 133:145–155. PubMedGoogle Scholar
  129. Reichert JM (2017) Antibodies to watch in 2017. mAbs 9:167–181. PubMedGoogle Scholar
  130. Reynoso R, Wieser M, Ojeda D, Bönisch M, Kühnel H, Bolcic F, Quendler H, Grillari J, Grillari-Voglauer R, Quarleri J (2012) HIV-1 induces telomerase activity in monocyte-derived macrophages, possibly safeguarding one of its reservoirs. J Virol 86:10327–10337. PubMedPubMedCentralGoogle Scholar
  131. Rodrigues V, Ruffin N, San-Roman M, Benaroch P (2017) Myeloid Cell Interaction with HIV: A Complex Relationship. Front Immunol 8:1698. PubMedPubMedCentralGoogle Scholar
  132. Saayman SM, Lazar DC, Scott TA, Hart JR, Takahashi M, Burnett JC, Planelles V, Morris KV, Weinberg MS (2016) Potent and Targeted Activation of Latent HIV-1 Using the CRISPR/dCas9 Activator Complex. Mol Ther J Am Soc Gene Ther 24:488–498. Google Scholar
  133. Sahay B, Yamamoto JK (2018) Lessons Learned in Developing a Commercial FIV Vaccine: The Immunity Required for an Effective HIV-1 Vaccine. Viruses 10.
  134. Salazar-Gonzalez JF, Salazar MG, Keele BF, Learn GH, Giorgi EE, Li H, Decker JM, Wang S, Baalwa J, Kraus MH, Parrish NF, Shaw KS, Guffey MB, Bar KJ, Davis KL, Ochsenbauer-Jambor C, Kappes JC, Saag MS, Cohen MS, Mulenga J, Derdeyn CA, Allen S, Hunter E, Markowitz M, Hraber P, Perelson AS, Bhattacharya T, Haynes BF, Korber BT, Hahn BH, Shaw GM (2009) Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. J Exp Med 206:1273–1289. PubMedPubMedCentralGoogle Scholar
  135. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber C-M, Saragosti S, Lapouméroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth RJ, Collman RG, Doms RW, Vassart G, Parmentier M (1996) Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382:722–725. PubMedGoogle Scholar
  136. Sang Y, Miller LC, Blecha F (2015) Macrophage Polarization in Virus-Host Interactions. J Clin Cell Immunol 6.
  137. Sauter D, Kirchhoff F (2018) Multilayered and versatile inhibition of cellular antiviral factors by HIV and SIV accessory proteins. Cytokine Growth Factor Rev 40:3–12. PubMedGoogle Scholar
  138. Schwartz C, Bouchat S, Marban C, Gautier V, Van Lint C, Rohr O, Le Douce V (2017) On the way to find a cure: Purging latent HIV-1 reservoirs. Biochem Pharmacol 146:10–22. PubMedGoogle Scholar
  139. Shah HR, Savjani JK (2018) Recent updates for designing CCR5 antagonists as anti-retroviral agents. Eur J Med Chem 147:115–129. PubMedGoogle Scholar
  140. Soper A, Kimura I, Nagaoka S, Konno Y, Yamamoto K, Koyanagi Y, Sato K (2018) Type I Interferon Responses by HIV-1 Infection: Association with Disease Progression and Control. Front Immunol 8.
  141. Spivak AM, Planelles V (2016) HIV-1 Eradication: Early Trials (and Tribulations). Trends Mol Med 22:10–27. PubMedGoogle Scholar
  142. Spivak AM, Planelles V (2018) Novel Latency Reversal Agents for HIV-1 Cure. Annu Rev Med 69:421–436. PubMedGoogle Scholar
  143. Sugimoto C, Merino KM, Hasegawa A, Wang X, Alvarez XA, Wakao H, Mori K, Kim W-K, Veazey RS, Didier ES, Kuroda MJ (2017) Critical Role for Monocytes/Macrophages in Rapid Progression to AIDS in Pediatric Simian Immunodeficiency Virus-Infected Rhesus Macaques. J Virol 91.
  144. T’Jonck W, Guilliams M, Bonnardel J (2018) Niche signals and transcription factors involved in tissue-resident macrophage development. Cell Immunol.
  145. Takeda A, Tuazon CU, Ennis FA (1988) Antibody-enhanced infection by HIV-1 via Fc receptor-mediated entry. Science 242:580–583PubMedGoogle Scholar
  146. Tang Y-D, Na L, Zhu C-H, Shen N, Yang F, Fu X-Q, Wang Y-H, Fu L-H, Wang J-Y, Lin Y-Z, Wang X-F, Wang X, Zhou J-H, Li C-Y (2014) Equine Viperin Restricts Equine Infectious Anemia Virus Replication by Inhibiting the Production and/or Release of Viral Gag, Env, and Receptor via Distortion of the Endoplasmic Reticulum. J Virol 88:12296–12310. PubMedPubMedCentralGoogle Scholar
  147. Tomitaka A, Arami H, Huang Z, Raymond A, Rodriguez E, Cai Y, Febo M, Takemura Y, Nair M (2017) Hybrid magneto-plasmonic liposomes for multimodal image-guided and brain-targeted HIV treatment. Nanoscale 10:184–194. PubMedGoogle Scholar
  148. Varol C, Mildner A, Jung S (2015) Macrophages: Development and Tissue Specialization. Annu Rev Immunol 33:643–675. PubMedGoogle Scholar
  149. Wang XQ, Palmer S (2018) Single-molecule techniques to quantify and genetically characterise persistent HIV. Retrovirology 15.
  150. Warren K, Warrilow D, Meredith L, Harrich D (2009) Reverse Transcriptase and Cellular Factors: Regulators of HIV-1 Reverse Transcription. Viruses 1:873–894. PubMedPubMedCentralGoogle Scholar
  151. Wei DG, Chiang V, Fyne E, Balakrishnan M, Barnes T, Graupe M, Hesselgesser J, Irrinki A, Murry JP, Stepan G, Stray KM, Tsai A, Yu H, Spindler J, Kearney M, Spina CA, McMahon D, Lalezari J, Sloan D, Mellors J, Geleziunas R, Cihlar T (2014) Histone Deacetylase Inhibitor Romidepsin Induces HIV Expression in CD4 T Cells from Patients on Suppressive Antiretroviral Therapy at Concentrations Achieved by Clinical Dosing. PLoS Pathogens 10:e1004071. PubMedPubMedCentralGoogle Scholar
  152. Wigdahl B (2014) HIV Excision Utilizing CRISPR/Cas9 Technology: Attacking the Proviral Quasispecies in Reservoirs to Achieve a Cure. MOJ Immunol 1.
  153. Woodham AW, Skeate JG, Sanna AM, Taylor JR, Da Silva DM, Cannon PM, Kast WM (2016) Human Immunodeficiency Virus Immune Cell Receptors, Coreceptors, and Cofactors: Implications for Prevention and Treatment. AIDS Patient Care STDs 30:291–306. PubMedPubMedCentralGoogle Scholar
  154. Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496:445–455. PubMedPubMedCentralGoogle Scholar
  155. Xu F, Acosta EP, Liang L, He Y, Yang J, Kerstner-Wood C, Zheng Q, Huang J, Wang K (2017) Current Status of the Pharmacokinetics and Pharmacodynamics of HIV-1 Entry Inhibitors and HIV Therapy. Curr Drug Metab 18.
  156. Yang M, Zhi R, Lu L, Dong M, Wang Y, Tian F, Xia M, Hu J, Dai Q, Jiang S, Li W (2018) A CCR5 antagonist-based HIV entry inhibitor exhibited potent spermicidal activity: Potential application for contraception and prevention of HIV sexual transmission. Eur J Pharm Sci 117:313–320. PubMedGoogle Scholar
  157. Yin H, Song C-Q, Dorkin JR, Zhu LJ, Li Y, Wu Q, Park A, Yang J, Suresh S, Bizhanova A, Gupta A, Bolukbasi MF, Walsh S, Bogorad RL, Gao G, Weng Z, Dong Y, Koteliansky V, Wolfe SA, Langer R, Xue W, Anderson DG (2016) Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol 34:328–333. PubMedPubMedCentralGoogle Scholar
  158. Yin L, Hu S, Mei S, Sun H, Xu F, Li J, Zhu W, Liu X, Zhao F, Zhang D, Cen S, Liang C, Guo F (2018) CRISPR/Cas9 inhibits multiple steps of HIV-1 infection. Hum Gene Ther.
  159. Zhang S, Troyer DL, Kapil S, Zheng L, Kennedy G, Weiss M, Xue W, Wood C, Minocha HC (1997) Detection of proviral DNA of bovine immunodeficiency virus in bovine tissues by polymerase chain reaction (PCR) and PCR in situ hybridization. Virology 236:249–257. PubMedGoogle Scholar
  160. Zhang J, Wu J, Wang W, Wu H, Yu B, Wang J, Lv M, Wang X, Zhang H, Kong W, Yu X (2014) Role of cullin-elonginB-elonginC E3 complex in bovine immunodeficiency virus and maedi-visna virus Vif-mediated degradation of host A3Z2-Z3 proteins. Retrovirology 11:77.
  161. Zhang Z, Li S, Gu Y, Xia N (2016) Antiviral Therapy by HIV-1 Broadly Neutralizing and Inhibitory Antibodies. Int J Mol Sci 17:1901. PubMedCentralGoogle Scholar
  162. Zhang N, Guo H, Yang J, Liu G, Li S, Li S, Wang D, Li R, Shu C, Xu H, Wei Z, Huang H, Zhang S, Gao P, Cen S, Markham R, Wang Y, Yu X-F, Wei W (2017) The poly-proline tail of SIVmac Vpx provides gain of function for resistance to a cryptic proteasome-dependent degradation pathway. Virology 511:23–29. PubMedGoogle Scholar
  163. Zheng W, Ling L, Li Z, Wang H, Rui Y, Gao W, Wang S, Su X, Wei W, Yu X-F (2017) Conserved Interaction of Lentiviral Vif Molecules with HIV-1 Gag and Differential Effects of Species-Specific Vif on Virus Production. J Virol 91.
  164. Zhu J, Gaiha GD, John SP, Pertel T, Chin CR, Gao G, Qu H, Walker BD, Elledge SJ, Brass AL (2012) Reactivation of latent HIV-1 by inhibition of BRD4. Cell Rep 2:807–816. PubMedPubMedCentralGoogle Scholar
  165. Zhu W, Lei R, Le Duff Y, Li J, Guo F, Wainberg MA, Liang C (2015) The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA. Retrovirology 12:22. PubMedPubMedCentralGoogle Scholar
  166. Zhu Y, Zhang X, Ding X, Chong H, Cui S, He J, Wang X, He Y (2018) Exceptional potency and structural basis of a T1249-derived lipopeptide fusion inhibitor against HIV-1, HIV-2, and simian immunodeficiency virus. J Biol Chem 293:5323–5334. PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Comparative PathologyTulane National Primate Research CenterCovingtonUSA
  2. 2.Department of Microbiology & Immunology, Division of Comparative Pathology, Tulane National Primate Research Center, Tulane Center for AgingTulane Brain InstituteCovingtonUSA

Personalised recommendations