Journal of Neuroimmune Pharmacology

, Volume 14, Issue 2, pp 215–225 | Cite as

Immunomodulatory Properties of Bone Marrow Mesenchymal Stem Cells from Patients with Amyotrophic Lateral Sclerosis and Healthy Donors

  • Eliska JavorkovaEmail author
  • Nicole Matejckova
  • Alena Zajicova
  • Barbora Hermankova
  • Michaela Hajkova
  • Pavla Bohacova
  • Jan Kossl
  • Magdalena Krulova
  • Vladimir Holan


Pathogenesis of amyotrophic lateral sclerosis (ALS) involves several mechanisms resulting in a shift from a neuroprotective to a neurotoxic immune reaction. A promising tool for ALS treatment is represented by mesenchymal stem cells (MSCs), which possess both regenerative potential and immunomodulatory properties. In this study, we aimed to compare the immunomodulatory properties of MSCs isolated from the bone marrow of patients suffering from ALS and healthy donors. Moreover, the influence of proinflammatory cytokines on the immunoregulatory functions of MSCs was also evaluated. We found that MSCs from ALS patients and healthy donors comparably affected mitogen-stimulated peripheral blood mononuclear cells and reduced the percentage of T helper (Th)1, Th17 and CD8+CD25+ lymphocytes. These MSCs also equally increased the percentage of Th2 and CD4+FOXP3+ T lymphocytes. On the other hand, MSCs from ALS patients decreased more strongly the production of tumour necrosis factor-α than MSCs from healthy donors, but this difference was abrogated in the case of MSCs stimulated with cytokines. Significant differences between cytokine-treated MSCs from ALS patients and healthy donors were detected in the effects on the percentage of CD8+CD25+ and CD4+FOXP3+ T lymphocytes. In general, treatment of MSCs with cytokines results in a potentiation of their effects, but in the case of MSCs from ALS patients, it causes stagnation or even restriction of some of their immunomodulatory properties. We conclude that MSCs from ALS patients exert comparable immunomodulatory effects to MSCs from healthy donors, but respond differently to stimulation with proinflammatory cytokines.

Graphical Abstract

Treatment of mesenchymal stem cells (MSCs) with cytokines results in a potentiation of their effects, but in the case of MSCs from amyotrophic lateral sclerosis (ALS) patients, it causes stagnation (an equal reduction of the percentage of CD8+CD25+ T lymphocytes) or even restriction (no increase of proportion of CD4+FOXP3+ T lymphocytes) of some of their immunomodulatory properties. It means that MSCs from ALS patients exert comparable immunomodulatory effects to MSCs from healthy donors, but respond differently to stimulation with proinflammatory cytokines.


Mesenchymal stem cells Amyotrophic lateral sclerosis Immunomodulation Helper T lymphocytes CD4+FOXP3+ T lymphocytes Proinflammatory cytokines 



amyotrophic lateral sclerosis




bone marrow


Dulbecco’s modified Eagle’s medium


dimethyl sulfoxide


enzyme-linked immunosorbent assay


fluorescein isothiocyanate


healthy control








monoclonal antibody


multiple sclerosis


mesenchymal stem cells


peripheral blood mononuclear cells


phosphate-buffered saline


programmed death-ligand 1






rheumatoid arthritis


T helper


tumour necrosis factor


T regulatory



This work was supported by Charles University grant (SVV 244-260435), by the Grant Agency of Charles University (projects number 80815 and 1516218) and by the Czech Ministry of Education, Youth and Sports (NPUI: LO1309 and LO1508).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.


  1. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822CrossRefGoogle Scholar
  2. Bensimon G, Lacomblez L, Meininger V (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole study group. N Engl J Med 330:585–591CrossRefGoogle Scholar
  3. Bonab MM, Sahraian MA, Aghsaie A, Karvigh SA, Hosseinian SM, Nikbin B, Lotfi J, Khorramnia S, Motamed MR, Togha M, Harirchian MH, Moghadam NB, Alikhani K, Yadegari S, Jafarian S, Gheini MR (2012) Autologous mesenchymal stem cell therapy in progressive multiple sclerosis: an open label study. Curr Stem Cell Res Ther 7:407–414CrossRefGoogle Scholar
  4. Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron Diseases (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299CrossRefGoogle Scholar
  5. Chiò A, Logroscino G, Traynor BJ, Collins J, Simeone JC, Goldstein LA, White LA (2013) Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology 41:118–130CrossRefGoogle Scholar
  6. Cho GW, Noh MY, Kim HY, Koh SH, Kim KS, Kim SH (2010) Bone marrow-derived stromal cells from amyotrophic lateral sclerosis patients have diminished stem cell capacity. Stem Cells Dev 19:1035–1042CrossRefGoogle Scholar
  7. de Oliveira GL, de Lima KW, Colombini AM, Pinheiro DG, Panepucci RA, Palma PV, Brum DG, Covas DT, Simões BP, de Oliveira MC, Donadi EA, Malmegrim KC (2015) Bone marrow mesenchymal stromal cells isolated from multiple sclerosis patients have distinct gene expression profile and decreased suppressive function compared with healthy counterparts. Cell Transplant 24:151–165CrossRefGoogle Scholar
  8. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Dj P, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317CrossRefGoogle Scholar
  9. English K, Barry FP, Field-Corbett CP, Mahon BP (2007) IFN-γ and TNF-α differentially regulate immunomodulation by murine mesenchymal stem cells. Immunol Lett 110:91–100CrossRefGoogle Scholar
  10. Ferrero I, Mazzini L, Rustichelli D, Gunetti M, Mareschi K, Testa L, Nasuelli N, Oggioni GD, Fagioli F (2008) Bone marrow mesenchymal stem cells from healthy donors and sporadic amyotrophic lateral sclerosis patients. Cell Transplant 17:255–266CrossRefGoogle Scholar
  11. Ghannam S, Pène J, Moquet-Torcy G, Jorgensen C, Yssel H (2010) Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol 185:302–312CrossRefGoogle Scholar
  12. Graves MC, Fiala M, Dinglasan LA, Liu NQ, Sayre J, Chiappelli F, van Kooten C, Vinters HV (2004) Inflammation in amyotrophic lateral sclerosis spinal cord and brain is mediated by activated macrophages, mast cells and T cells. Amyotroph Lateral Scler Other Motor Neuron Disord 5:213–219CrossRefGoogle Scholar
  13. Holan V, Hermankova B, Bohacova P, Kossl J, Chudickova M, Hajkova M, Krulova M, Zajicova A, Javorkova E (2016) Distinct immunoregulatory mechanisms in mesenchymal stem cells: role of the cytokine environment. Stem Cell Rev 12:654–663CrossRefGoogle Scholar
  14. Hooten KG, Beers DR, Zhao W, Appel SH (2015) Protective and toxic neuroinflammation in amyotrophic lateral sclerosis. Neurotherapeutics 12:364–375CrossRefGoogle Scholar
  15. Javorkova E, Trosan P, Zajicova A, Krulova M, Hajkova M, Holan V (2014) Modulation of the early inflammatory microenvironment in the alkali-burned eye by systemically administered interferon-γ-treated mesenchymal stromal cells. Stem Cells Dev 23:2490–2500CrossRefGoogle Scholar
  16. Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I, Bulte JW, Petrou P, Ben-Hur T, Abramsky O, Slavin S (2010) Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 67:1187–1194CrossRefGoogle Scholar
  17. Kim J, Hematti P (2009) Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 37:1445–1453CrossRefGoogle Scholar
  18. Koh SH, Baik W, Noh MY, Cho GW, Kim HY, Kim KS, Kim SH (2012) The functional deficiency of bone marrow mesenchymal stromal cells in ALS patients is proportional to disease progression rate. Exp Neurol 233:472–480CrossRefGoogle Scholar
  19. Le Blanc K, Rasmusson I, Götherström C, Seidel C, Sundberg B, Sundin M, Rosendahl K, Tammik C, Ringdén O (2004) Mesenchymal stem cells inhibit the expression of CD25 (interleukin-2 receptor) and CD38 on phytohaemagglutinin-activated lymphocytes. Scand J Immunol 60:307–315CrossRefGoogle Scholar
  20. Maggini J, Mirkin G, Bognanni I, Holmberg J, Piazzón IM, Nepomnaschy I, Costa H, Cañones C, Raiden S, Vermeulen M, Geffner JR (2010) Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One 5:e9252. CrossRefGoogle Scholar
  21. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M (2013) Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 229:176–185CrossRefGoogle Scholar
  22. Schuurman HJ, van Wichen D, de Weger RA (1989) Expression of activation antigens on thymocytes in the 'common thymocyte' stage of differentiation. Thymus 14:43–53Google Scholar
  23. Skalska U, Kontny E (2016) Adipose-derived mesenchymal stem cells from infrapatellar fat pad of patients with rheumatoid arthritis and osteoarthritis have comparable immunomodulatory properties. Autoimmunity 49:124–131CrossRefGoogle Scholar
  24. Sun Y, Deng W, Geng L, Zhang L, Liu R, Chen W, Yao G, Zhang H, Feng X, Gao X, Sun L (2015) Mesenchymal stem cells from patients with rheumatoid arthritis display impaired function in inhibiting Th17 cells. J Immunol Res 2015:1–13. CrossRefGoogle Scholar
  25. Svobodova E, Krulova M, Zajicova A, Pokorna K, Prochazkova J, Trosan P, Holan V (2012) The role of mouse mesenchymal stem cells in differentiation of naive T-cells into anti-inflammatory regulatory T-cell or proinflammatory helper T-cell 17 population. Stem Cells Dev 21:901–910CrossRefGoogle Scholar
  26. Vercelli A, Mereuta OM, Garbossa D, Muraca G, Mareschi K, Rustichelli D, Ferrero I, Mazzini L, Madon E, Fagioli F (2008) Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 31:395–405CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Eliska Javorkova
    • 1
    • 2
    Email author
  • Nicole Matejckova
    • 1
    • 2
  • Alena Zajicova
    • 1
  • Barbora Hermankova
    • 1
    • 2
  • Michaela Hajkova
    • 1
    • 2
  • Pavla Bohacova
    • 1
    • 2
  • Jan Kossl
    • 1
    • 2
  • Magdalena Krulova
    • 1
    • 2
  • Vladimir Holan
    • 1
    • 2
  1. 1.Department of Transplantation ImmunologyInstitute of Experimental Medicine of the Czech Academy of SciencesPragueCzech Republic
  2. 2.Department of Cell Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic

Personalised recommendations