Advertisement

Journal of Neuroimmune Pharmacology

, Volume 13, Issue 3, pp 345–354 | Cite as

Dimethyl Fumarate Prevents HIV-Induced Lysosomal Dysfunction and Cathepsin B Release from Macrophages

  • Lester J. Rosario-Rodríguez
  • Krystal Colón
  • Gabriel Borges-Vélez
  • Karla Negrón
  • Loyda M. Meléndez
ORIGINAL ARTICLE

Abstract

HIV-associated neurocognitive disorders (HAND) are prevalent despite combined antiretroviral therapy, affecting nearly half of HIV-infected patients worldwide. During HIV infection of macrophages secretion of the lysosomal protein, cathepsin B, is increased. Secreted cathepsin B has been shown to induce neurotoxicity. Oxidative stress is increased in HIV-infected patients, while antioxidants are decreased in monocytes from patients with HIV-associated dementia (HAD). Dimethyl fumarate (DMF), an antioxidant, has been reported to decrease HIV replication and neurotoxicity mediated by HIV-infected macrophages. Thus, we hypothesized that DMF will decrease cathepsin B release from HIV-infected macrophages by preventing oxidative stress and enhancing lysosomal function. Monocyte-derived macrophages (MDM) were isolated from healthy donors, inoculated with HIV-1ADA, and treated with DMF following virus removal. After 12 days post-infection, HIV-1 p24 and total cathepsin B levels were measured from HIV-infected MDM supernatants using ELISA; intracellular reactive oxygen and nitrogen species (ROS/RNS) were measured from MDM lysates, and functional lysosomes were assessed using a pH-dependent lysosomal dye. Neurons were incubated with serum-free conditioned media from DMF-treated MDM and neurotoxicity was determined using TUNEL assay. Results indicate that DMF reduced HIV-1 replication and cathepsin B secretion from HIV-infected macrophages in a dose-dependent manner. Also, DMF decreased intracellular ROS/RNS levels, and prevented HIV-induced lysosomal dysfunction and neuronal apoptosis. In conclusion, the improvement in lysosomal function with DMF treatment may represent the possible mechanism to reduce HIV-1 replication and cathepsin B secretion. DMF represents a potential therapeutic strategy against HAND.

Keywords

Cathepsin B HIV DMF Lysosomes MDM HIV-associated neurocognitive disorders 

Notes

Acknowledgements

This research was supported in part by grants from the National Institutes of Health: R25-GM061838 (LR, KC), R01MH083516 (LMM) U54MD007600 (LMM), R25-GM082406, SC1GM11369–01 (LMM), and University of Puerto Rico School of Medicine and Biomedical Sciences Deanships. We thank the Puerto Rico Clinical and Translational Research Consortium (PRCTRC) grant U54MD007587 from National Institute on Minority Health and Health Disparities (NIMHD) and the National Institute of Allergy and Infectious Diseases (NIAID) of the National Institutes of Health for the clinical support in obtaining samples from HIV-seronegative donors and for their partial support in obtaining the Nikon Eclipse E400, with a camera SPOT Insight QE and Fluorescence X-Cite Series 120 used in fluorescence assays.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedure performed in studies involving human subjects were in accordance with the ethical standards the institutional review board and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all subjects included in this study. This article does not contain any studies with animals performed by any of the authors.

Supplementary material

11481_2018_9794_MOESM1_ESM.docx (371 kb)
ESM 1 (DOCX 370 kb)

References

  1. Albrecht P, Bouchachia I, Goebels N, Henke N, Hofstetter HH, Issberner A, Kovacs Z, Lewerenz J, Lisak D, Maher P, Mausberg AK, Quasthoff K, Zimmermann C, Hartung HP, Methner A (2012) Effects of dimethyl fumarate on neuroprotection and immunomodulation. J Neuroinflammation 9:163.  https://doi.org/10.1186/1742-2094-9-163 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ancuta P, Kamat A, Kunstman KJ, Kim EY, Autissier P, Wurcel A, Zaman T, Stone D, Mefford M, Morgello S, Singer EJ, Wolinsky SM, Gabuzda D (2008) Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients. PLoS One 3:e2516.  https://doi.org/10.1371/journal.pone.0002516 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anderson AM, Muñoz-Moreno JA, McClernon D, Ellis RJ, Cookson D, Clifford DB, Collier AC, Gelman BB, Marra CM, McArthur J, McCutchan J, Morgello S, Sacktor N, Simpson DM, Franklin DR, Heaton RK, Grant I, Letendre SL, CHARTER Group (2016) Prevalence and correlates of persistent HIV-1 RNA in cerebrospinal fluid during antiretroviral therapy. J Infect Dis 215:105–113.  https://doi.org/10.1093/infdis/jiw505 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aquaro S, Scopelliti F, Pollicita M, Perno CF (2008) Oxidative stress and HIV infection: target pathways for novel therapies? Futur HIV Ther 2:327–338.  https://doi.org/10.2217/17469600.2.4.327 CrossRefGoogle Scholar
  5. Brennan MS, Matos MF, Li B, Hronowski X, Gao B, Juhasz P, Rhodes KJ, Scannevin RH (2015) Dimethyl fumarate and monoethyl fumarate exhibit differential effects on KEAP1, NRF2 activation, and glutathione depletion in vitro. PLoS One 10:e0120254.  https://doi.org/10.1371/journal.pone.0120254 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Campbell GR, Rawat P, Bruckman RS, Spector SA (2015) Human immunodeficiency virus type 1 Nef inhibits autophagy through transcription factor EB sequestration. PLoS Pathog 11:e1005018.  https://doi.org/10.1371/journal.ppat.1005018 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cantres-Rosario YM, Hernandez N, Negron K, Perez-Laspiur J, Leszyk J, Shaffer SA, Meléndez LM (2015) Interacting partners of macrophage-secreted cathepsin B contribute to HIV-induced neuronal apoptosis. AIDS 29:1.  https://doi.org/10.1097/QAD.0000000000000823 CrossRefGoogle Scholar
  8. Carter GC, Bernstone L, Baskaran D, James W (2011) HIV-1 infects macrophages by exploiting an endocytic route dependent on dynamin, Rac1 and Pak1. Virology 409:234–250.  https://doi.org/10.1016/j.virol.2010.10.018 CrossRefPubMedGoogle Scholar
  9. Cassol E, Cassetta L, Alfano M, Poli G (2010) Macrophage polarization and HIV-1 infection. J Leukoc Biol 87:599–608.  https://doi.org/10.1189/jlb.1009673 CrossRefPubMedGoogle Scholar
  10. Chauhan A, Mehla R, Vijayakumar TS, Handy I (2014) Endocytosis-mediated HIV-1 entry and its significance in the elusive behavior of the virus in astrocytes. Virology 456-457:1–19.  https://doi.org/10.1016/j.virol.2014.03.002 CrossRefPubMedGoogle Scholar
  11. Chen X, Hui L, Geiger NH, Haughey NJ, Geiger JD (2013) Endolysosome involvement in HIV-1 transactivator protein-induced neuronal amyloid beta production. Neurobiol Aging 34:2370–2378.  https://doi.org/10.1016/j.neurobiolaging.2013.04.015 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cinti A, Le Sage V, Milev MP et al (2017) HIV-1 enhances mTORC1 activity and repositions lysosomes to the periphery by co-opting Rag GTPases. Sci Rep 7:5515.  https://doi.org/10.1038/s41598-017-05410-0 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Crews L, Patrick C, Achim CL, Everall I, Masliah E (2009) Molecular pathology of neuro-AIDS (CNS-HIV). Int J Mol Sci 10:1045–1063.  https://doi.org/10.3390/ijms10031045 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cross SA, Cook DR, Chi AW et al (2011) Dimethyl fumarate, an immune modulator and inducer of the antioxidant response, suppresses HIV replication and macrophage-mediated neurotoxicity: a novel candidate for HIV neuroprotection. J Immunol 187:5015–5025.  https://doi.org/10.4049/jimmunol.1101868 CrossRefPubMedPubMedCentralGoogle Scholar
  15. De Rosa SC, Zaretsky MD, Dubs JG et al (2000) N-acetylcysteine replenishes glutathione in HIV infection. Eur J Clin Investig 30:915–929CrossRefGoogle Scholar
  16. Eligini S, Brioschi M, Fiorelli S, Tremoli E, Banfi C, Colli S (2015) Human monocyte-derived macrophages are heterogenous: proteomic profile of different phenotypes. J Proteome 124:112–123.  https://doi.org/10.1016/j.jprot.2015.03.026 CrossRefGoogle Scholar
  17. Fan Y, He JJ (2016) HIV-1 tat promotes lysosomal exocytosis in astrocytes and contributes to astrocyte-mediated tat neurotoxicity. J Biol Chem 291:22830–22840.  https://doi.org/10.1074/jbc.M116.731836 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fleetwood AJ, Dinh H, Cook AD, Hertzog PJ, Hamilton JA (2009) GM-CSF- and M-CSF-dependent macrophage phenotypes display differential dependence on type I interferon signaling. J Leukoc Biol 86:411–421.  https://doi.org/10.1189/jlb.1108702 CrossRefPubMedGoogle Scholar
  19. Fox RJ, Miller DH, Phillips JT, Hutchinson M, Havrdova E, Kita M, Yang M, Raghupathi K, Novas M, Sweetser MT, Viglietta V, Dawson KT, CONFIRM Study Investigators (2012) Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med 367:1087–1097.  https://doi.org/10.1056/NEJMoa1206328 CrossRefPubMedGoogle Scholar
  20. Ghafouri M, Amini S, Khalili K, Sawaya BE (2006) HIV-1 associated dementia: symptoms and causes. Retrovirology 3(28):28.  https://doi.org/10.1186/1742-4690-3-28 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gill AJ, Kolson DL (2013) Dimethyl fumarate modulation of immune and antioxidant responses: application to HIV therapy. Crit Rev Immunol 33:307–359CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, Tornatore C, Sweetser MT, Yang M, Sheikh SI, Dawson KT, DEFINE Study Investigators (2012) Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 367:1098–1107.  https://doi.org/10.1056/NEJMoa1114287 CrossRefPubMedGoogle Scholar
  23. Guo H, Gao J, Taxman DJ, Ting JPY, Su L (2014) HIV-1 infection induces interleukin-1β production via TLR8 protein-dependent and NLRP3 inflammasome mechanisms in human monocytes. J Biol Chem 289:21716–21726.  https://doi.org/10.1074/jbc.M114.566620 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Herbein G, Varin A (2010) The macrophage in HIV-1 infection: from activation to deactivation? Retrovirology 7:33.  https://doi.org/10.1186/1742-4690-7-33 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hoefnagel JJ, Thio HB, Willemze R, Bouwes Bavinck JN (2003) Long-term safety aspects of systemic therapy with fumaric acid esters in severe psoriasis. Br J Dermatol 149:363–369.  https://doi.org/10.1046/j.1365-2133.2003.05433.x CrossRefPubMedGoogle Scholar
  26. Hui L, Chen X, Haughey NJ, Geiger JD (2012) Role of endolysosomes in HIV-1 Tat-induced neurotoxicity. ASN Neuro 4:243-52.  https://doi.org/10.1042/AN20120017 CrossRefPubMedGoogle Scholar
  27. Ivanov AV, Valuev-Elliston VT, Ivanova ON, Kochetkov SN, Starodubova ES, Bartosch B, Isaguliants MG (2016) Oxidative stress during HIV infection: mechanisms and consequences. Oxidative Med Cell Longev 8910396:2016–2018.  https://doi.org/10.1155/2016/8910396 CrossRefGoogle Scholar
  28. Johnson DE, Ostrowski P, Jaumouillé V, Grinstein S (2016) The position of lysosomes within the cell determines their luminal pH. J Cell Biol 212:677–692.  https://doi.org/10.1083/jcb.201507112 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jouve M, Sol-Foulon N, Watson S, Schwartz O, Benaroch P (2007) HIV-1 buds and accumulates in “nonacidic” endosomes of macrophages. Cell Host Microbe 2:85–95.  https://doi.org/10.1016/j.chom.2007.06.011 CrossRefPubMedGoogle Scholar
  30. Kallianpur KJ, Gerschenson M, Mitchell BI, LiButti DE, Umaki TM, Ndhlovu LC, Nakamoto BK, Chow DC, Shikuma CM (2016) Oxidative mitochondrial DNA damage in peripheral blood mononuclear cells is associated with reduced volumes of hippocampus and subcortical gray matter in chronically HIV-infected patients. Mitochondrion 28:8–15.  https://doi.org/10.1016/j.mito.2016.02.006 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kappos L, Gold R, Miller DH, MacManus DG, Havrdova E, Limmroth V, Polman CH, Schmierer K, Yousry TA, Yang M, Eraksoy M, Meluzinova E, Rektor I, Dawson KT, Sandrock AW, O'Neill GN (2008) Efficacy and safety of oral fumarate in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study. Lancet 372:1463–1472.  https://doi.org/10.1016/S0140-6736(08)61619-0 CrossRefPubMedGoogle Scholar
  32. Kawai A, Uchiyama H, Takano S, Nakamura N, Ohkuma S (2007) Autophagosome-lysosome fusion depends on the pH in acidic compartments in CHO cells. Autophagy 3:154–157.  https://doi.org/10.4161/auto.3634 CrossRefPubMedGoogle Scholar
  33. Kraft-Terry SD, Stothert AR, Buch S, Gendelman HE (2010) HIV-1 neuroimmunity in the era of antiretroviral therapy. Neurobiol Dis 37:542–548.  https://doi.org/10.1016/j.nbd.2009.12.015 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lin SX, Lisi L, Dello Russo C et al (2011) The anti-inflammatory effects of dimethyl fumarate in astrocytes involve glutathione and haem oxygenase-1. ASN Neuro 3:75–84.  https://doi.org/10.1042/AN20100033 CrossRefGoogle Scholar
  35. Louboutin JP, Agrawal L, Reyes BA et al (2009) HIV-1 gp120 neurotoxicity proximally and at a distance from the point of exposure: protection by rSV40 delivery of antioxidant enzymes. Neurobiol Dis 34:462–476.  https://doi.org/10.1016/j.nbd.2009.03.003 CrossRefPubMedGoogle Scholar
  36. Louboutin JP, Reyes BA, Agrawal L et al (2010) HIV-1 gp120-induced neuroinflammation: relationship to neuron loss and protection by rSV40-delivered antioxidant enzymes. Exp Neurol 221:231–245.  https://doi.org/10.1016/j.expneurol.2009.11.004 CrossRefPubMedGoogle Scholar
  37. Martini-Stoica H, Xu Y, Ballabio A, Zheng H (2016) The autophagy–lysosomal pathway in neurodegeneration: a TFEB perspective. Trends Neurosci 39:221–234.  https://doi.org/10.1016/j.tins.2016.02.002 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Medina DL, Fraldi A, Bouche V, Annunziata F, Mansueto G, Spampanato C, Puri C, Pignata A, Martina JA, Sardiello M, Palmieri M, Polishchuk R, Puertollano R, Ballabio A (2011) Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev Cell 21:421–430.  https://doi.org/10.1016/j.devcel.2011.07.016 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mollace V, Nottet HS, Clayette P et al (2001) Oxidative stress and neuroAIDS: triggers, modulators and novel antioxidants. Trends Neurosci 24:411–416.  https://doi.org/10.1016/S0166-2236(00)01819-1 CrossRefPubMedGoogle Scholar
  40. Morris D, Guerra C, Donohue C, Oh H, Khurasany M, Venketaraman V (2012) Unveiling the mechanisms for decreased glutathione in individuals with HIV infection. Clin Dev Immunol 734125:2012–2010.  https://doi.org/10.1155/2012/734125 CrossRefGoogle Scholar
  41. Neuenburg JK, Brodt HR, Herndier BG et al (2002) HIV-related neuropathology, 1985 to 1999: rising prevalence of HIV encephalopathy in the era of highly active antiretroviral therapy. J Acquir Immune Defic Syndr 31:171–177.  https://doi.org/10.1097/01.QAI.0000030047.72209.D3 CrossRefPubMedGoogle Scholar
  42. Ni XJ, Wu Z, Peterts C et al (2015) The critical role of proteolytic relay through Cathepsins B and E in the phenotypic change of microglia/macrophage. J Neurosci 35:12488–12501.  https://doi.org/10.1523/JNEUROSCI.1599-15.2015 CrossRefPubMedGoogle Scholar
  43. Price TO, Ercal N, Nakaoke R, Banks WA (2005) HIV-1 viral proteins gp120 and Tat induce oxidative stress in brain endothelial cells. Brain Res 1045:57–63.  https://doi.org/10.1016/j.brainres.2005.03.031 CrossRefPubMedGoogle Scholar
  44. Price TO, Uras F, Banks WA, Ercal N (2006) A novel antioxidant N-acetylcysteine amide prevents gp120- and Tat-induced oxidative stress in brain endothelial cells. Exp Neurol 201:193–202.  https://doi.org/10.1016/j.expneurol.2006.03.030 CrossRefPubMedGoogle Scholar
  45. Ravi S, Peña KA, Chu CT, Kiselyov K (2016) Biphasic regulation of lysosomal exocytosis by oxidative stress. Cell Calcium 60:356–362.  https://doi.org/10.1016/j.ceca.2016.08.002 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Reddy PV, Agudelo M, Atluri VS, Nair MP (2012) Inhibition of nuclear factor erythroid 2-related factor 2 exacerbates HIV-1 gp120-induced oxidative and inflammatory response: role in HIV associated neurocognitive disorder. Neurochem Res 37:1697–1706.  https://doi.org/10.1007/s11064-012-0779-0 CrossRefPubMedGoogle Scholar
  47. Reich K, Thaci D, Mrowietz U, Kamps A, Neureither M, Luger T (2009) Efficacy and safety of fumaric acid esters in the long-term treatment of psoriasis--a retrospective study (FUTURE). J Dtsch Dermatol Ges 7:603–611.  https://doi.org/10.1111/j.1610-0387.2009.07120.x PubMedCrossRefGoogle Scholar
  48. Rodriguez-Franco EJ, Cantres-Rosario YM, Plaud-Valentin M, Romeu R, Rodríguez Y, Skolasky R, Meléndez V, Cadilla CL, Melendez LM (2012) Dysregulation of macrophage-secreted cathepsin B contributes to HIV-1-linked neuronal apoptosis. PLoS One 7:e36571.  https://doi.org/10.1371/journal.pone.0036571 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sacktor N, Haughey N, Cutler R, Tamara A, Turchan J, Pardo C, Vargas D, Nath A (2004) Novel markers of oxidative stress in actively progressive HIV dementia. J Neuroimmunol 157:176–184.  https://doi.org/10.1016/j.jneuroim.2004.08.037 CrossRefPubMedGoogle Scholar
  50. Saha RN, Pahan K (2007) Differential regulation of Mn-superoxide dismutase in neurons and astroglia by HIV-1 gp120: implications for HIV-associated dementia. Free Radic Biol Med 42:1866–1878.  https://doi.org/10.1016/j.freeradbiomed.2007.03.022 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Saylor D, Dickens AM, Sacktor N, Haughey N, Slusher B, Pletnikov M, Mankowski JL, Brown A, Volsky DJ, McArthur JC (2016) HIV-associated neurocognitive disorder — pathogenesis and prospects for treatment. Nat Rev Neurol 12:234–248.  https://doi.org/10.1038/nrneurol.2016.27 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sbano L, Bonora M, Marchi S, Baldassari F, Medina DL, Ballabio A, Giorgi C, Pinton P (2017) TFEB-mediated increase in peripheral lysosomes regulates store-operated calcium entry. Sci Rep 7:40797.  https://doi.org/10.1038/srep40797 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Scannevin RH, Chollate S, Jung M, Shackett M, Patel H, Bista P, Zeng W, Ryan S, Yamamoto M, Lukashev M, Rhodes KJ (2012) Fumarates promote cytoprotection of central nervous system cells against oxidative stress via the nuclear factor (erythroid-derived 2)-like 2 pathway. J Pharmacol Exp Ther 341:274–284.  https://doi.org/10.1124/jpet.111.190132 CrossRefPubMedGoogle Scholar
  54. Schifitto G, Yiannoutsos CT, Ernst T, Navia BA, Nath A, Sacktor N, Anderson C, Marra CM, Clifford DB, For the ACTG 5114 Team (2009) Selegiline and oxidative stress in HIV-associated cognitive impairment. Neurology 73:1975–1981.  https://doi.org/10.1212/WNL.0b013e3181c51a48 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Tan HY, Wang N, Li S, Hong M, Wang X, Feng Y (2016) The reactive oxygen species in macrophage polarization: reflecting its dual role in progression and treatment of human diseases. Oxidative Med Cell Longev 2795090:1–16.  https://doi.org/10.1155/2016/2795090 CrossRefGoogle Scholar
  56. Velázquez I, Plaud M, Wojna V, Skolasky R, Laspiur JP, Meléndez LM (2009) Antioxidant enzyme dysfunction in monocytes and CSF of Hispanic women with HIV-associated cognitive impairment. J Neuroimmunol 206:106–111.  https://doi.org/10.1016/j.jneuroim.2008.10.013 CrossRefPubMedGoogle Scholar
  57. Wang Q, Chuikov S, Taitano S, Wu Q, Rastogi A, Tuck S, Corey J, Lundy S, Mao-Draayer Y (2015) Dimethyl fumarate protects neural stem/progenitor cells and neurons from oxidative damage through Nrf2-ERK1/2 MAPK pathway. Int J Mol Sci 16:13885–13907.  https://doi.org/10.3390/ijms160613885 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Werneburg NW, Guicciardi ME, Bronk SF, Gores GJ (2002) Tumor necrosis factor-alpha-associated lysosomal permeabilization is cathepsin B dependent. Am J Physiol Gastrointest Liver Physiol 283:G947–G956.  https://doi.org/10.1152/ajpgi.00151.2002 CrossRefPubMedGoogle Scholar
  59. Wilms H, Sievers J, Rickert U, Rostami-Yazdi M, Mrowietz U, Lucius R (2010) Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1beta, TNF-alpha and IL-6 in an in-vitro model of brain inflammation. J Neuroinflammation 7:30.  https://doi.org/10.1186/1742-2094-7-30 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Xu H, Ren D (2015) Lysosomal physiology. Annu Rev Physiol 77:57–80.  https://doi.org/10.1146/annurev-physiol-021014-071649 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Yamashima T, Oikawa S (2009) The role of lysosomal rupture in neuronal death. Prog Neurobiol 89:343–358.  https://doi.org/10.1016/j.pneurobio.2009.09.003 CrossRefPubMedGoogle Scholar
  62. Zenón F, Segarra AC, Gonzalez M et al (2014) Cocaine potentiates cathepsin B secretion and neuronal apoptosis from HIV-infected macrophages. J NeuroImmune Pharmacol 9:703–715.  https://doi.org/10.1007/s11481-014-9563-z CrossRefPubMedPubMedCentralGoogle Scholar
  63. Zenón F, Cantres-Rosario Y, Adiga R et al (2015) HIV-infected microglia mediate cathepsin B-induced neurotoxicity. J Neurovirol.  https://doi.org/10.1007/s13365-015-0358-7

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lester J. Rosario-Rodríguez
    • 1
  • Krystal Colón
    • 1
  • Gabriel Borges-Vélez
    • 1
  • Karla Negrón
    • 2
  • Loyda M. Meléndez
    • 1
  1. 1.Department of Microbiology and Medical Zoology, School of MedicineUniversity of Puerto Rico Medical Sciences CampusSan JuanPuerto Rico
  2. 2.Department of BiologyUniversity of Puerto Rico, Bayamón CampusBayamónPuerto Rico

Personalised recommendations