Beta2-Adrenoceptor Agonists in Parkinson’s Disease and Other Synucleinopathies

  • Luca Magistrelli
  • Cristoforo ComiEmail author


Evidence supporting the use of β2AR agonists in synucleinopathies is rapidly growing. Findings come from different scientific approaches. Molecular and immunological data suggest that adrenergic stimulation may decrease both α-synuclein (α-syn) deposition and pro-inflammatory/neurotoxic molecules release. Small open label clinical trials including a total number of 25 Parkinson’s disease (PD) patients, in which the β2AR agonist salbutamol was added to levodopa, suggest a promising symptomatic benefit. In line with these findings, epidemiological studies investigating the risk of PD development suggest that long term exposure to the agonist salbutamol might be protective, while the antagonist propranolol possibly detrimental. Nonetheless, in both lines of investigation the studies performed so far present important limitations. On the clinical side, large randomized controlled trials are lacking, whereas on the epidemiological side the presence of co-morbid conditions (i.e. smoking and essential tremor) potentially influencing PD risk should taken into consideration. In summary, it is our opinion that β2AR stimulation in synucleinopathies has a rationale and therefore merits further investigation.

Graphical Abstract


Parkinson’s disease Immune system Adrenergic system beta2 adrenergic agonists Alpha-synuclein 



This study was funded by the AGING PROJECT – Department of Excellence – Università del Piemonte Orientale.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Ağaç D, Estrada LD, Maples R, Hooper LV , Farrar JD. (2018). The β2-adrenergic receptor controls inflammation by driving rapid IL-10 secretion Brain Behav Immun.
  2. Alberio T, Pippione AC, Zibetti M, Olgiati S, Cecconi D, Comi C, Lopiano L, Fasano M (2012a) Discovery and verification of panels of T-lymphocyte proteins as biomarkers of Parkinson's disease. Sci Rep 2:953CrossRefGoogle Scholar
  3. Alberio T, Pippione AC, Comi C, Olgiati S, Cecconi D, Zibetti M, Lopiano L, Fasano M (2012b) Dopaminergic therapies modulate the T-CELL proteome of patients with Parkinson's disease. IUBMB Life 64:846–852CrossRefGoogle Scholar
  4. Alexander GM, Schwartzman RJ, Nukes TA, Grothusen JR, Hooker MD (1994) β2-adrenergic agonist as adjunct therapy to levodopa in Parkinson’s disease. Neurology 44:1511–1513CrossRefGoogle Scholar
  5. Arango V, Ernsberger P, Reis DJ, Mann JJ (1990) Demonstration of high- and low-affinity beta-adrenergic receptors in slide-mounted sections of rat and human brain. Brain Res 516:113–121Google Scholar
  6. Barker RA, Williams-Gray CH (2016) Review: the spectrum of clinical features seen with alpha synuclein pathology. Neuropathol Appl Neurobiol 42:6–19CrossRefGoogle Scholar
  7. Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. J Neurol Sci 20:415–455CrossRefGoogle Scholar
  8. Bhide N, Lindenbach D, Barnum CJ, George JA, Surrena MA, Bishop C (2015) Effects of beta-adrenergic receptor antagonist propranolol on dyskinesia and L-DOPA-induced striatal DA efflux in the hemi-parkinsonian rat. J Neurochem 134:222–232CrossRefGoogle Scholar
  9. Bottner M, Fricke T, Müller M, Barrenschee M, Deuschl G, Schneider SA et al (2015) Alpha-synuclein is associated with the synaptic vesicle apparatus in the human and rat enteric nervous system. Brain Res 1614:51–59CrossRefGoogle Scholar
  10. Brown CG (2007) Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochem Soc Trans 35:1119–1121CrossRefGoogle Scholar
  11. Bujis RM, van der Vliet J, Garidou ML, Huitinga I, Escobar C (2008) Spleen vagal denervation inhibits the production of antibodies to circulating antigens. PLoS One 3:3152CrossRefGoogle Scholar
  12. Butkovich LM, Houser MC, Tansey MG (2018) α-Synuclein and noradrenergic modulation of immune cells in Parkinson’s disease pathogenesis. Front Neurosci 12:626. CrossRefGoogle Scholar
  13. Cappellano G, Carecchio M, Fleetwood T, Magistrelli L, Cantello R, Dianzani U et al (2013) Immunity and inflammation in neurodegenerative diseases. Am J Neurodegener Dis 21:89–107Google Scholar
  14. Cash R, Ruberg M, Raisman R, Agid Y (1984) Adrenergic receptors in Parkinson’s disease. Brain Res 322:269–275CrossRefGoogle Scholar
  15. Comi C, Magistrelli L, Oggioni GD, Carecchio M, Fleetwood T, Cantello R, Mancini F, Antonini A (2014) Peripheral nervous system involvement in Parkinson’s disease: evidence and controversies. Parkinsonism Relat Disord 20:1329–1334CrossRefGoogle Scholar
  16. Comi C, Ferrari M, Marino F, Magistrelli L, Cantello R, Riboldazzi G et al (2017) Polymorphisms of dopamine receptor genes and risk of L-Dopa-induced dyskinesia in parkinson's disease. Int J Mol Sci 24:pii: E242CrossRefGoogle Scholar
  17. Corrado L, De Marchi F, Tunesi S, Oggioni GD, Carecchio M, Magistrelli L et al (2018) The length of SNCA Rep1 microsatellite may influence cognitive evolution in Parkinson's disease. Front Neurol 9:213CrossRefGoogle Scholar
  18. Cosentino M, Marino F (2013) Adrenergic and dopaminergic modulation of immunity in multiple sclerosis: teaching old drugs new tricks? J NeuroImmune Pharmacol 8:163–179CrossRefGoogle Scholar
  19. Cosentino M, Marino F, Bombelli R, Ferrari M, Lecchini S, Frigo G (1999) Endogenous catecholamine synthesis, metabolism, storage and uptake in human neutrophils. Life Sci 64:975–981CrossRefGoogle Scholar
  20. Cosentino M, Fietta AM, Ferrari M, Rasini E, Bombelli R, Carcano E, Saporiti F, Meloni F, Marino F, Lecchini S (2007) Human CD4+CD25+ regulatory T cells selectively express tyrosine hydroxylase and contain endogenous catecholamines subserving an autocrine/paracrine inhibitory functional loop. Blood 109:632–642CrossRefGoogle Scholar
  21. Cosentino M, Ferrari M, Kustrimovic N, Rasini E, Marino F (2015) Influence of dopamine receptor gene polymorphisms on circulating T lymphocytes: a pilot study in healthy subjects. Hum Immunol 76:747–752CrossRefGoogle Scholar
  22. Culmsee C, Junker V, Kremers W, Thal S, Plesnila N, Krieglstein J (2004) Combination therapy in ischemic stroke: synergistic neuroprotective effects of Memantine and Clenbuterol. Stroke 35:1197–1202CrossRefGoogle Scholar
  23. Elliott L, Brooks W, Roszman T (1992) Inhibition of anti-CD3 monoclonal antibody-induced T-cell proliferation by dexamethasone, isoproterenol, or prostaglandin E2 either alone or in combination. Cell Mol Neurobiol 12:411–427CrossRefGoogle Scholar
  24. Espay AJ, Morgante F, Merola A, Fasano A, Marsili L, Fox SH, Bezard E, Picconi B, Calabresi P, Lang AE (2018) Levodopa-induced dyskinesia in Parkinson disease: current and evolving concepts. Ann Neurol 84:797–811. CrossRefGoogle Scholar
  25. Farmer P, Pugin J (2000) Beta-adrenergic agonists exert their “anti-inflammatory” effects in monocytic cells through the IkappaB/NF-kappaB pathway. Am J Physiol Lung Cell Mol Physiol 279:L675–L682CrossRefGoogle Scholar
  26. Gendelman HE, Zhang Y, Santamaria P, Olson KE, Schutt CR, Bhatti D, Shetty BLD, Lu Y, Estes KA, Standaert DG, Heinrichs-Graham E, Larson LA, Meza JL, Follett M, Forsberg E, Siuzdak G, Wilson TW, Peterson C, Mosley RL (2017) Evaluation of the safety and immunomodulatory effects of sargramostim in a randomized, double-blind phase 1clinical Parkinson’s disease. Npj Parkinsons disease 3:10. CrossRefGoogle Scholar
  27. George S, Brundin P (2015) Immunotherapy in Parkinson's disease: micromanaging alpha-Synuclein aggregation. J Parkinsons Dis 5:413–424CrossRefGoogle Scholar
  28. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P et al (2008) Movement Disorder Society UPDRS revision task force. Movement Disorder Society sponsored revision of the unified Parkinson’s disease rating scale (MDSUPDRS): scale presentation and clinimetric testing results. Mov Disord 23:2129CrossRefGoogle Scholar
  29. Gomez-Mancilla B, Bedard PJ (1993) Effect of nondopaminergic drugs on L-Dopa-induced dyskinesias in MPTP-treated monkeys. Clin Neuropharmacol 16:418–427CrossRefGoogle Scholar
  30. Gronich N, Abernethy DR, Auriel E, Lavi I, Rennert G, Saliba W (2018) β2-adrenoceptor agonists and antagonists and risk of Parkinson's disease. Mov Disord 33:1465–1471CrossRefGoogle Scholar
  31. Hishida R, Kurahashi K, Narita S, Baba T, Matsunaga M (1992) “Wearing-off” and beta 2-adrenoceptor agonist in Parkinson’s disease. Lancet 339:870CrossRefGoogle Scholar
  32. Kenney MJ, Ganta CK (2014) Autonomic nervous system and immune system interactions. Compr Physiol 4:1177–1200CrossRefGoogle Scholar
  33. Khoury SJ, Healy BC, Kivisäkk P, Viglietta V, Egorova S, Guttmann CR (2010) A randomized controlled double-masked trial of albuterol add-on therapy in patients with multiple sclerosis. Arch Neurol 67:1055–1061CrossRefGoogle Scholar
  34. Koros C, Simitsi A, Stefanis L (2017) Genetics of Parkinson's disease: genotype-phenotype correlations. Int Rev Neurobiol 132:197–231CrossRefGoogle Scholar
  35. Kostrzewa RM (2007) The blood-brain barrier for cathecolamines – revisited. Neurotox Res 11:261–271CrossRefGoogle Scholar
  36. Kustrimovic N, Rasini E, Legnaro M, Bombelli R, Aleksic I, Blandini F, Comi C, Mauri M, Minafra B, Riboldazzi G, Sanchez-Guajardo V, Marino F, Cosentino M (2016) Dopaminergic receptors on CD4+ T naive and memory lymphocytes correlate with motor impairment in patients with Parkinson's disease. Sci Rep 6:33738CrossRefGoogle Scholar
  37. Kustrimovic N, Comi C, Magistrelli L, Rasini E, Legnaro M, Bombelli R, Aleksic I, Blandini F, Minafra B, Riboldazzi G, Sturchio A, Mauri M, Bono G, Marino F, Cosentino M (2018) Parkinson's disease patients have a complex phenotypic and functional Th1 bias: cross-sectional studies of CD4+ Th1/Th2/T17 and Treg in drug-naïve and drug-treated patients. J Neuroinflammation 15:205CrossRefGoogle Scholar
  38. Laureys G, Clinckers R, Gerlo S, Spooren A, Wilczak N, Kooijman R, Smolders I, Michotte Y, de Keyser J (2010) Astrocytic β-2 adrenergic receptors: from physiology to pathology. Prog Neurobiol 91:189–199CrossRefGoogle Scholar
  39. Lee W, Koh S, Hwang S, Kim SH (2018) Presynaptic dysfunction by familial factors in Parkinson disease. Int Neurourol J 22:S115–S121CrossRefGoogle Scholar
  40. Lindenbach D, Ostock CY, Eskow Jaunarajs KL, Dupre KB, Barnum CJ, Bhide N, Bishop C (2011) Behavioural and cellular modulation of L-DOPA-induced dyskinesia by β-adrenoceptor receptor blockade in the 6-OHDA lesioned rat. J Pharmacol Exp Ther 337:755–765CrossRefGoogle Scholar
  41. Liu Y, Rui XX, Shi H, Qiu YH, Peng YP (2018) Norepinephrine inhibits Th17 cells via beta2-adrenergic receptor (beta2-AR) signaling in a mouse model of rheumatoid arthritis. Med Sci Monit 24:1196–1204CrossRefGoogle Scholar
  42. Maestroni GJ (2006) Sympathetic nervous system influence on the innate immune response. Ann N Y Acad Sci 1069:195–207CrossRefGoogle Scholar
  43. Makhlouf K, Comabella M, Imitola J, Weiner HL, Khoury SJ (2001) Oral salbutamol decreases IL-12 in patients with secondary progressive multiple sclerosis. J Neuroimmunol 117:156–165CrossRefGoogle Scholar
  44. Marino F, Cosentino M (2013) Adrenergic modulation of immune cells: an update. Amino Acids 45:55–71CrossRefGoogle Scholar
  45. Miraglia F, Ricci A, Rota L, Colla E (2018) Subcellular localization of alpha-synuclein aggregates and their interaction with membranes. Neural Regen Res 13:1136–1144CrossRefGoogle Scholar
  46. Mittal S, Børnevik K, Soon Im D, Flierl A, Xianjun D, Locascio JJ et al (2017) β2-Adrenoreceptor is a regulator of the synuclein gene driving risk of Parkinson’s disease. Science 357:891–898CrossRefGoogle Scholar
  47. Nielsen SS, Gross A, Camacho-Soto A, Willis AW, Racette BA (2018) β2-adrenoreceptor medications and risk of Parkinson disease. Ann Neurol 84:683–693. CrossRefGoogle Scholar
  48. Paul-Eugène N, Kolb JP, Damais C, Abadie A, Mencia-Huerta JM, Braquet P, Bousquet J, Dugas B (1994) Beta-2 adrenoceptors agonists regulate the IL-4-induced phenotypical changes and IgE-dependent functions in normal human monocytes. J Leukoc Biol 55:313–320CrossRefGoogle Scholar
  49. Pazos A, Probst A, Palacios JM (1985) Β-adrenoceptor subtypes in the human brain: autoradiographic localization. Brain Res 358:201–206CrossRefGoogle Scholar
  50. Peterson L, Ismond KP, Chapman E, Flood P (2014) Potential benefits of therapeutic use of β2-adrenergic receptor agonists in neuroprotection and Parkinson’s disease. Journal of immunology research. J Immunol Res 2014:103780CrossRefGoogle Scholar
  51. Pillon, Dubois B, Cusimano G, Bonnet AM, Lhermitte F, Agid Y (1989) Does cognitive impairment in Parkinson’s disease result from non-dopamingergic lesions? J Neurol Neurosurg Psychiatry 52:201–206CrossRefGoogle Scholar
  52. Qian L, Wu HM, Chen AH, Zhang D, Ali SF, Peterson L et al (2011) β2-adrenergic receptor activation prevents rodent dopaminergic neurotoxicity by inhibiting microglia via a novel signaling pathway. J Immunol 186:4443–4454CrossRefGoogle Scholar
  53. Rainbow TC, Parsons B, Wolfe BB (1984) Quantitative autoradiography of β1-and β2-adrenergic receptors in rat brain. Proc Natl Acad Sci U S A 81:1585–1589CrossRefGoogle Scholar
  54. Ratge D, Wiedemann A, Kohse KP, Wisser H (1988) Alterations of beta-adrenoceptors on human leukocyte subsets induced by dynamic exercise: effect of prednisone. Clin Exp Pharmacol Physiol 15:43–53CrossRefGoogle Scholar
  55. Ritz B, Ascherio A, Checkoway H, Marder KS, Nelson LM, Rocca WA, Ross GW, Strickland D, van den Eeden SK, Gorell J (2007) Pooled analysis of tobacco use and risk of Parkinson disease. Arch Neurol 64:990–997CrossRefGoogle Scholar
  56. Sanders VM (2012) The beta2-adrenergic receptor on T and B lymphocytes: do we understand it yet? Brain, Behaviour and Immunity 26:195–200CrossRefGoogle Scholar
  57. Scanzano A, Cosentino M (2015) Adrenergic regulation of innate immunity: a review. Front Pharmacol 6:171. CrossRefGoogle Scholar
  58. Scanzano A, Schembri L, Rasini E, Luini A, Dellatorre J, Legnaro M et al (2015) Adrenergic modulation of migration, Cd11b and CD18 expression, ROS and interleukin-8 production by human polymorphonuclear leukocytes. Inflamm Res 64:127–135CrossRefGoogle Scholar
  59. Scatton B, Javoy-Agid F, Rouquier L, Dubois B, Agid Y (1983) Reduction od cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson disease. Brain Res 275:321–328CrossRefGoogle Scholar
  60. Stamelou M, Bhatia KP (2016) Atypical parkinsonism-new advances. Curr Opin Neurol 29:480–485CrossRefGoogle Scholar
  61. Sulzer D, Alcalay RN, Garretti F, Cote L, Kanter E, Agin-Liebes J, Liong C, McMurtrey C, Hildebrand WH, Mao X, Dawson VL, Dawson TM, Oseroff C, Pham J, Sidney J, Dillon MB, Carpenter C, Weiskopf D, Phillips E, Mallal S, Peters B, Frazier A, Lindestam Arlehamn CS, Sette A (2017) T cells from patients with Parkinson's disease recognize α-synuclein peptides. Nature 546:656–661CrossRefGoogle Scholar
  62. Sveinbjornsdottir S (2016) The clinical symptoms of Parkinson's disease. J Neurochem 139:318–324CrossRefGoogle Scholar
  63. Swanson MA, Lee WT, Sanders VM (2001) IFN-gamma production by Th1 cells generated from naive CD4? T cells exposed to norepinephrine. J Immunol 166:232–240CrossRefGoogle Scholar
  64. Takahashi HK, Iwagaki H, Mori S, Yoshino T, Tanaka N, Nishibori M (2004) Beta 2-adrenergic receptor agonist induces IL-18 production without IL-12 production. J Neuroimmunol 151:137–147CrossRefGoogle Scholar
  65. Tank AW, Wong DL (2015) Peripheral and central effects of circulating cathecolamines. Compr Physiol 5:1–15Google Scholar
  66. Teng YD, Choi D, Huang R, Onario C, Frontera WR, Sydner EY et al (2006) Therapeutic effects of clenbuterol in a murine model of amyotrophic lateral sclerosis. Neurosci Lett 97:155–158CrossRefGoogle Scholar
  67. Thenganatt MA, Jankovic J (2016) The relationship between essential tremor and Parkinson's disease. Parkinsonism Relat Disord 22:S162–S165CrossRefGoogle Scholar
  68. Uc EY, Dienel GA, Cruz NF, Hark SI (2002) β-Adrenergics enhance brain extraction of levodopa. Mov Disord 17:54–59CrossRefGoogle Scholar
  69. Uc EY, Lambert CP, Harik SI, Rodnitzky RL, Evans WJ (2003) Albuterol improves response to levodopa and increases skeletal muscle mass in patients with fluctuating Parkinson disease. Clin Neuropharmacol 26:207–212CrossRefGoogle Scholar
  70. Vargas KJ, Schrod N, Davis T, Fernandez-Busnadiego R, Taguchi YV, Laugks U, Lucic V, Chandra SS (2017) Synucleins have multiple effects on presynaptic architecture. Cell Rep 18:161–173CrossRefGoogle Scholar
  71. Waeber C, Rigo M, Chinaglia G, Probst A, Palacios JM (1991) Beta-adrenergic receptor subtypes in the basal ganglia of patients with Huntington’s chorea and Parkinson’s disease. Synapse 8:270–280CrossRefGoogle Scholar
  72. Xu L, Ding W, Stohl LL, Zhou XK, Azizi S, Chuang E, Lam J, Wagner JA, Granstein RD (2018) Regulation of T helper cell responses during antigen presentation by norepinephrine-exposed endothelial cells. Immunology 154:104–121CrossRefGoogle Scholar
  73. Zhu H, Lemos H, Bhatt B, Islam BN, Singh A, Gurav A, Huang L, Browning DD, Mellor A, Fulzele S, Singh N (2017) Carbidopa, a drug in use for management of Parkinson disease inhibits T cell activation and autoimmunity. PLoS One 12(9):e0183484CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Movement Disorders Centre, Neurology Unit, Department of Translational MedicineUniversity of Piemonte OrientaleNovaraItaly
  2. 2.PhD Program in Clinical and Experimental Medicine and Medical HumanitiesUniversity of InsubriaVareseItaly
  3. 3.Interdisciplinary Research Center of Autoimmune Diseases (IRCAD)University of Piemonte OrientaleNovaraItaly

Personalised recommendations