Advertisement

Plasmonics

pp 1–9 | Cite as

Graphene Plasmonic Crystal: Two-Dimensional Gate-Controlled Chemical Potential for Creation of Photonic Bandgap

  • Milad Taleb Hesami Azar
  • Mahdi ZavvariEmail author
  • Yashar Zehforoosh
  • Pejman Mohammadi
Article
  • 6 Downloads

Abstract

A new design of graphene-based plasmonic waveguide is presented and its transmission properties are studied. The transmission channel is such designed that the chemical potential of graphene is periodically changed in two dimensions by application of voltage bias through a patterned substrate. Because of periodicity of structure, it shows a forbidden bandgap at terahertz (THz) frequencies similar to a conventional photonic crystal. The effect of different structure parameters on the rejection band frequency range is numerically studied and the switching function of the proposed waveguide is observed with rejection efficiency of more than 99%. The reported relation between center frequency of the rejection band and also FWHM with the related chemical potential of the 2D-GPC confirm the real-time tunability of the proposed structure employing an external bias voltage. According to the ultra-integrated size of the structure and its remarkable optical efficiency in THz range, such a realization can pave the way for further development in band rejection–based nanoplasmonic applications such as filtering and switching devices.

Keywords

Graphene nanoplasmonic Plasmonic crystal Photonic bandgap Two-dimension Gate-control 

Notes

References

  1. 1.
    Williams CR, Andrews SR, Maier S, Fernández-Domínguez A, Martín-Moreno L, García-Vidal F (2008) Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nat Photonics 2:175CrossRefGoogle Scholar
  2. 2.
    Yan M, Qiu M (2007) Analysis of surface plasmon polariton using anisotropic finite elements. IEEE Photon Technol Lett 19:1804–1806CrossRefGoogle Scholar
  3. 3.
    Wang W, Song Z (2018) Multipole plasmons in graphene nanoellipses. Phys B Condens Matter 530:142–146CrossRefGoogle Scholar
  4. 4.
    Hayashi S, Okamoto T (2012) Plasmonics: visit the past to know the future. J Phys D Appl Phys 45:433001CrossRefGoogle Scholar
  5. 5.
    Emboras A, Hoessbacher C, Haffner C, Heni W, Koch U, Ma P et al (2015) Electrically controlled plasmonic switches and modulators. IEEE J Sel Top Quant 21:276–283CrossRefGoogle Scholar
  6. 6.
    Murray WA, Barnes WL (2007) Plasmonic materials. Adv Mater 19:3771–3782CrossRefGoogle Scholar
  7. 7.
    Jones MR, Osberg KD, Macfarlane RJ, Langille MR, Mirkin CA (2011) Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem Rev 111:3736–3827PubMedCrossRefGoogle Scholar
  8. 8.
    Yang R, Lu Z (2011) Silicon-on-insulator platform for integration of 3-D nanoplasmonic devices. IEEE Photon Technol Lett 23:1652–1654CrossRefGoogle Scholar
  9. 9.
    Chen Y, Yao J, Song Z, Ye L, Cai G, Liu QH (2016) Independent tuning of double plasmonic waves in a free-standing graphene-spacer-grating-spacer-graphene hybrid slab. Opt Express 24:16961–16972PubMedCrossRefGoogle Scholar
  10. 10.
    Zavvari M, Azar MTH, Arashmehr A (2017) Tunable band-stop plasmonic filter based on square ring resonators in a metal-insulator-metal structure. J Mod Opt 64:2221–2227CrossRefGoogle Scholar
  11. 11.
    Ma FS, Lee C (2013) Optical nanofilters based on meta-atom side-coupled plasmonics metal- insulator-metal waveguides. J Lightwave Technol 31:2876–2880CrossRefGoogle Scholar
  12. 12.
    Chanda D, Shigeta K, Truong T, Lui E, Mihi A, Schulmerich M et al (2011) Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals. Nat Commun 2:479PubMedCrossRefGoogle Scholar
  13. 13.
    Azar MT, Zavvari M, Arashmehr A, Zehforoosh Y, Mohammadi P (2017) Design of a high-performance metal–insulator–metal plasmonic demultiplexer. J Nanophotonics 11:026002CrossRefGoogle Scholar
  14. 14.
    Nakayama K, Tonooka Y, Ota M, Ishii Y, Fukuda M (2018) Passive plasmonic demultiplexers using multimode interference. J Lightwave Technol 36:1979–1984CrossRefGoogle Scholar
  15. 15.
    Gómez-Díaz J-S, Perruisseau-Carrier J (2013) Graphene-based plasmonic switches at near infrared frequencies. Opt Express 21:15490–15504PubMedCrossRefGoogle Scholar
  16. 16.
    Wang G, Lu H, Liu X, Gong Y (2012) Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating. Nanotechnology 23:444009PubMedCrossRefGoogle Scholar
  17. 17.
    Wei M, Song Z, Deng Y, Liu Y, Chen Q (2019) Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces. Mater Lett 236:350–353CrossRefGoogle Scholar
  18. 18.
    Melikyan A, Alloatti L, Muslija A, Hillerkuss D, Schindler PC, Li J et al (2014) High-speed plasmonic phase modulators. Nat Photonics 8:229CrossRefGoogle Scholar
  19. 19.
    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10:2342–2348PubMedCrossRefGoogle Scholar
  20. 20.
    Song Z, Chen A, Zhang J, Wang J (2019) Integrated metamaterial with functionalities of absorption and electromagnetically induced transparency. Opt Express 27:25196–25204PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Song Z, Wei M, Wang Z, Cai G, Liu Y, Zhou Y (2019) Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces. IEEE Photonics J 11:1–7Google Scholar
  22. 22.
    Ellenbogen T, Seo K, Crozier KB (2012) Chromatic plasmonic polarizers for active visible color filtering and polarimetry. Nano Lett 12:1026–1031PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Chu Q, Song Z, Liu QH (2018) Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces. Appl Phys Express 11:082203CrossRefGoogle Scholar
  24. 24.
    Han Z, He S (2007) Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter. Opt Commun 278:199–203CrossRefGoogle Scholar
  25. 25.
    Ahn S, Rourke D, Park W (2016) Plasmonic nanostructures for organic photovoltaic devices. J Opt 18:033001CrossRefGoogle Scholar
  26. 26.
    Koppens FH, Chang DE, García de Abajo FJ (2011) Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett 11:3370–3377PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Low T, Avouris P (2014) Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8:1086–1101PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145CrossRefGoogle Scholar
  29. 29.
    Sutter P, Sutter E (2013) Microscopy of graphene growth, processing, and properties. Adv Funct Mater 23:2617–2634CrossRefGoogle Scholar
  30. 30.
    Dong Y, Liu P, Yu D, Li G, Yang L (2017) A tunable ultrabroadband ultrathin terahertz absorber using GRAPHENE STACKS. IEEE Antenn Wirel Pr 16:1115–1118CrossRefGoogle Scholar
  31. 31.
    Acik M, Chabal YJ (2011) Nature of graphene edges: a review. Jpn J Appl Phys 50:070101Google Scholar
  32. 32.
    Naumis GG, Barraza-Lopez S, Oliva-Leyva M, Terrones H (2017) Electronic and optical properties of strained graphene and other strained 2D materials: a review. Rep Prog Phys 80:096501PubMedCrossRefGoogle Scholar
  33. 33.
    Nguyen BH, Nguyen VH (2016) Promising applications of graphene and graphene-based nanostructures. Adv Nat Sci Nanosci Nanotechnol 7:023002CrossRefGoogle Scholar
  34. 34.
    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z et al (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6:630PubMedCrossRefGoogle Scholar
  35. 35.
    Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA et al (2006) Graphene-based composite materials. Nature 442:282PubMedCrossRefGoogle Scholar
  36. 36.
    Chorsi HT, Gedney SD (2017) Tunable plasmonic optoelectronic devices based on graphene metasurfaces. IEEE Photon Technol Lett 29:228–230CrossRefGoogle Scholar
  37. 37.
    Zhang Y, Tang T-T, Girit C, Hao Z, Martin MC, Zettl A et al (2009) Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459:820PubMedCrossRefGoogle Scholar
  38. 38.
    Castro EV, Novoselov K, Morozov S, Peres N, Dos Santos JL, Nilsson J et al (2007) Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys Rev Lett 99:216802PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Kim Y-J, Kim Y, Novoselov K, Hong BH (2015) Engineering electrical properties of graphene: chemical approaches. 2D Mater 2:042001CrossRefGoogle Scholar
  40. 40.
    Yao G, Ling F, Yue J, Luo Q, Yao J (2016) Dynamically tunable graphene plasmon-induced transparency in the terahertz region. J Lightwave Technol 34:3937–3942Google Scholar
  41. 41.
    Garcia de Abajo FJ (2014) Graphene plasmonics: challenges and opportunities. Acs Photonics 1:135–152CrossRefGoogle Scholar
  42. 42.
    Du W, Li K, Wu D, Jiao K, Jiao L, Liu L et al (2019) Electrically controllable directional coupler based on tunable hybrid graphene nanoplasmonic waveguide. Opt Commun 430:450–455CrossRefGoogle Scholar
  43. 43.
    Simsek E (2013) Improving tuning range and sensitivity of localized SPR sensors with graphene. IEEE Photon Technol Lett 25:867–870CrossRefGoogle Scholar
  44. 44.
    Xing P, Ooi KJ, Tan DT (2018) Ultra-broadband and compact graphene-on-silicon integrated waveguide mode filters. Sci Rep 8:9874PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Ze-Jiang Z, Jiu-Sheng L (2018) Terahertz band-stop filter based on graphene cavity. Micro Nano Lett 13:374–377CrossRefGoogle Scholar
  46. 46.
    Cai Y, Xu KD, Guo R, Zhu J, Liu QH (2018) Graphene-based plasmonic tunable dual-band bandstop filter in the far-infrared region. IEEE Photonics J 10:1–9Google Scholar
  47. 47.
    Wang X, Meng H, Liu S, Deng S, Jiao T, Wei Z et al (2018) Tunable graphene-based mid-infrared plasmonic multispectral and narrow band-stop filter. Mater Res Express 5:045804CrossRefGoogle Scholar
  48. 48.
    Li H-J, Wang L-L, Sun B, Huang Z-R, Zhai X (2016) Gate-tunable mid-infrared plasmonic planar band-stop filters based on a monolayer graphene. Plasmonics 11:87–93CrossRefGoogle Scholar
  49. 49.
    Shi B, Cai W, Zhang X, Xiang Y, Zhan Y, Geng J et al (2016) Tunable band-stop filters for graphene plasmons based on periodically modulated graphene. Sci Rep 6:26796PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Azar MTH, Zavvari M, Mohammadi P, Zehforoosh Y (2018) Periodically voltage-modulated graphene plasmonic waveguide for band-rejection applications. J Nanophotonics 12:046002CrossRefGoogle Scholar
  51. 51.
    Falkovsky L, Pershoguba S (2007) Optical far-infrared properties of a graphene monolayer and multilayer. Phys Rev B 76:153410CrossRefGoogle Scholar
  52. 52.
    Depine RA (2016) Electromagnetics of graphene. In: Graphene Optics: Electromagnetic Solution of Canonical Problems. Morgan & Claypool Publishers, San Rafael, pp 1–1–1-16CrossRefGoogle Scholar
  53. 53.
    Zeng Z, Chen X, Liu J (2018) A highly tunable and angle-insensitive plasmon resonances based on graphene ring-circle arrays. Mater Res Express 5:095802CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Urmia BranchIslamic Azad UniversityUrmiaIran
  2. 2.Microwave and Antenna Research Center, Urmia BranchIslamic Azad UniversityUrmiaIran

Personalised recommendations