pp 1–8 | Cite as

Comparison of Fabrication Methods Based on Nanoimprinting Lithography for Plasmonic Color Filter Fabrication

  • Hyerin Song
  • Won-Kyu Lee
  • Jihye Lee
  • Seung-Hyun Lee
  • Young Min Song
  • Kyujung KimEmail author
  • Jun-Hyuk ChoiEmail author


The angle-variable tunable optical filter was strictly fabricated by two strategies of nanoimprint-coupled metal nanopatterning with improved cost-effectiveness and accessibility. The tunable optical properties and the performances of two strategies were experimentally examined and turned out to be well matched to numerical results. Tunable properties are obtained by three factors: size of fabricated Ag nanodisks, incident illumination angle, and fabrication strategies. The resonant extinction peak shifts were identified to show a large increase along with the increase in fabricated Ag disk size and increase in the incidence angle of illumination. When comparing a fabrication strategy, it was confirmed that the sample fabricated by the strip-off method has better stability on color changes with a consistent dependency on the incident angle. The presented strategies of fabrication are technically viable for obtaining well-defined plasmonic nanostructures so that it has the feasibility to apply for fascinating optical applications including display or tunable optical filters.


Plasmonic resonance Nanoimprint Multilayer transfer Optical filter Transmittance Nanodisks 


Funding information

This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2018R1A4A1025623, 2017M3D1A1039287). In addition, this research was funded by the Korea Institute for Advancement of Technology (KIAT) (N0002310) under the Ministry of Trade, Industry, and Energy (MOTIE).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary material

11468_2019_1109_MOESM1_ESM.docx (2.2 mb)
ESM 1 (DOCX 2277 kb)


  1. 1.
    Kanamori Y, Shimono M, Hane K (2006) Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates. IEEE Photon Technol Lett 18:2126–2128CrossRefGoogle Scholar
  2. 2.
    Cho E-H, Kim H-S, Cheong B-H et al (2009) Two-dimensional photonic crystal color filter development. Opt Express 17:8621CrossRefGoogle Scholar
  3. 3.
    Kinoshita S, Yoshioka S, Miyazaki J (2008) Physics of structural colors. Rep Prog Phys 71:076401CrossRefGoogle Scholar
  4. 4.
    Kim H, Ge J, Kim J et al (2009) Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal. Nat Photonics 3:534CrossRefGoogle Scholar
  5. 5.
    Kim W-G, Song H, Kim C et al (2016) Biomimetic self-templating optical structures fabricated by genetically engineered M13 bacteriophage. Biosens Bioelectron 85:853–859CrossRefGoogle Scholar
  6. 6.
    Kim W-G, Kim K, Ha S-H et al (2015) Virus based full colour pixels using a microheater. Sci Rep 5:13757CrossRefGoogle Scholar
  7. 7.
    Xu T, Shi H, Wu Y-K, Kaplan AF, Ok JG, Guo LJ (2011) Structural colors: from plasmonic to carbon nanostructures. Small 7:3128–3136CrossRefGoogle Scholar
  8. 8.
    Xu T, Wu Y-K, Luo X, Guo LJ (2010) Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat Commun 1:59CrossRefGoogle Scholar
  9. 9.
    Kaplan AF, Xu T, Jay Guo L (2011) High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography. Appl Phys Lett 99:143111CrossRefGoogle Scholar
  10. 10.
    Yokogawa S, Burgos SP, Atwater HA (2012) Plasmonic color filters for CMOS image sensor applications. Nano Lett 12:4349–4354CrossRefGoogle Scholar
  11. 11.
    Laux E, Genet C, Skauli T, Ebbesen TW (2008) Plasmonic photon sorters for spectral and polarimetric imaging. Nat Photonics 2:161CrossRefGoogle Scholar
  12. 12.
    Lee H-S, Yoon Y-T, Lee S-S et al (2007) Color filter based on a subwavelength patterned metal grating. Opt Express 15:15457–15463CrossRefGoogle Scholar
  13. 13.
    Ahn H, Song H, Shin D-M et al (2018) Emerging optical spectroscopy techniques for biomedical applications—a brief review of recent progress. Appl Spectrosc Rev 53:264–278CrossRefGoogle Scholar
  14. 14.
    Song H, Ahn H, Kim T et al (2019) Manipulation of light at the nanoscale for high-performance spectroscopic and optical applications. Appl Spectrosc Rev 54:482–508CrossRefGoogle Scholar
  15. 15.
    Ahn H, Song H, Choi J-R, Kim K (2017) A localized surface plasmon resonance sensor using double-metal-complex nanostructures and a review of recent approaches. Sensors 18:98CrossRefGoogle Scholar
  16. 16.
    Lochbihler H (2015) Polarizing and angle-sensitive color filter in transmittance for security feature applications. Adv Optical Technol 4:12155Google Scholar
  17. 17.
    Davis MS, Zhu W, Xu T et al (2017) Aperiodic nanoplasmonic devices for directional colour filtering and sensing. Nat Commun 8:1347CrossRefGoogle Scholar
  18. 18.
    Arslan D, Chong KE, Miroshnichenko AE et al (2017) Angle-selective all-dielectric Huygens’ metasurfaces. J Phys D Appl Phys 50:434002CrossRefGoogle Scholar
  19. 19.
    Duempelmann L, Casari D, Luu-Dinh A, Gallinet B, Novotny L (2015) Color rendering Plasmonic aluminum substrates with angular symmetry breaking. ACS Nano 9:12383–12391CrossRefGoogle Scholar
  20. 20.
    Sauvage-Vincent J, Tonchev S, Veillas C et al (2013) Optical security device for document protection using plasmon resonant transmission through a thin corrugated metallic film embedded in a plastic foil. Journal of the European Optical Society - Rapid publications 8Google Scholar
  21. 21.
    Jeon S, Sung S-K, Jang E-H et al (2018) Multilayer metal-oxide-metal nanopatterns via nanoimprint and strip-off for multispectral resonance. Appl Surf Sci 428:280–288CrossRefGoogle Scholar
  22. 22.
    Xin JZ, Lee FK, Li SYW et al (2011) Transfer imprint lithography using a soft mold. Microelectron Eng 88:2632–2635CrossRefGoogle Scholar
  23. 23.
    Gao L, Shigeta K, Vazquez-Guardado A, Progler CJ, Bogart GR, Rogers JA, Chanda D (2014) Nanoimprinting techniques for large-area three-dimensional negative index metamaterials with operation in the visible and telecom bands. ACS Nano 8:5535–5542CrossRefGoogle Scholar
  24. 24.
    Jeong JW, Yang SR, Hur YH et al (2014) High-resolution nanotransfer printing applicable to diverse surfaces via interface-targeted adhesion switching. Nat Commun 5:5387CrossRefGoogle Scholar
  25. 25.
    Jun TAO, Yong-Hua LU, Rong-Sheng Z et al (2008) Effect of aspect ratio distribution on localized surface plasmon resonance extinction spectrum of gold nanorods. No 12:4459Google Scholar
  26. 26.
    Si G, Zhao Y, Leong ESP et al (2014) Incident-angle dependent color tuning from a single plasmonic chip. Nanotechnology 25:455203CrossRefGoogle Scholar
  27. 27.
    Zheng J, Ye Z-C, Sheng Z-M (2016) Reflective low-sideband plasmonic structural colors. Opt Mater Express, OME 6:381–387CrossRefGoogle Scholar
  28. 28.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B Condens Matter 6:4370–4379CrossRefGoogle Scholar
  29. 29.
    Zorić I, Zäch M, Kasemo B, Langhammer C (2011) Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms. ACS Nano 5:2535–2546CrossRefGoogle Scholar
  30. 30.
    Ye M, Sun L, Hu X, Shi B, Zeng B, Wang L, Zhao J, Yang S, Tai R, Fecht HJ, Jiang JZ, Zhang DX (2015) Angle-insensitive plasmonic color filters with randomly distributed silver nanodisks. Opt Lett 40:4979–4982CrossRefGoogle Scholar
  31. 31.
    Chung T, Lee S-Y, Song EY, Chun H, Lee B (2011) Plasmonic nanostructures for nano-scale bio-sensing. Sensors 11:10907–10929CrossRefGoogle Scholar
  32. 32.
    Hanarp P, Käll M, Sutherland DS (2003) Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography. J Phys Chem B 107:5768–5772CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Hyerin Song
    • 1
  • Won-Kyu Lee
    • 2
  • Jihye Lee
    • 2
  • Seung-Hyun Lee
    • 3
  • Young Min Song
    • 4
  • Kyujung Kim
    • 1
    Email author
  • Jun-Hyuk Choi
    • 2
    Email author
  1. 1.Department of Cogno-Mechatronics EngineeringPusan National University (PNU)BusanRepublic of Korea
  2. 2.Nanomechanical Systems Research DivisionKorea Institute of Machinery and Materials (KIMM)DaejeonRepublic of Korea
  3. 3.Advanced Manufacturing Systems Research DivisionKorea Institute of Machinery and Materials (KIMM)DaejeonRepublic of Korea
  4. 4.School of Electrical Engineering and Computer ScienceGwangju Institute of Science and Technology (GIST)GwangjuRepublic of Korea

Personalised recommendations