pp 1–7 | Cite as

An Angle-Insensitive Metamaterial Absorber Based on the Gravity Field Regulation

  • Xing-Liang Tian
  • Hai-Feng ZhangEmail author
  • Xin-Ru Kong


In this paper, we propose a novel gravity-tailored absorber to achieve two different absorption peaks at two different frequencies, whose improvement is based on the traditional sandwich structure. It is unusual that two dug grooves inside are filled with the liquid dielectrics. Since existing the gravity field, rotating this absorber in the xy plane will make the absorption peak change. In addition, this gravity-tailored absorber has a good stability of the incidence angle. The discussion of the power flow, the electric field, and structure parameters are also given to explain the physical mechanism. Compared with the existing manners of regulation, this regulation of presented absorber might be more convenient to achieve.


Metamaterial Tailored absorber Gravity field 


Funding Information

This work was supported by the Open Research Program in China’s State Key Laboratory of Millimeter Waves (Grant No. K201927) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJKY19_0809).


  1. 1.
    Popa BI, Cummer SA (2015) Water-based metamaterials: negative refraction of sound. Nat Mater 14(4):363–364CrossRefGoogle Scholar
  2. 2.
    Zhu R, Liu XN, Hu GK, Cun CT, Huang GL (2014) Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial. Nat Commun 5:5510CrossRefGoogle Scholar
  3. 3.
    Ran J, Zhang YW, Chen XD, Fang K, Zhao JF, Sun Y, Chen H (2015) Realizing tunable inverse and normal Doppler shifts in reconfigurable RF metamaterials. Sci Rep 5(4):11659CrossRefGoogle Scholar
  4. 4.
    Cheng Y, Yang H, Cheng Z, NAN W (2010) Perfect metamaterial absorber based on a split-ring-cross resonator. Appl Phys 102(1):99–103CrossRefGoogle Scholar
  5. 5.
    Yao G, Ling F, Yue J, Luo C, Ji J, Yao J (2016) Dual-band tunable perfect metamaterial absorber in the THz range. Opt Express 24(2):1518–1527CrossRefGoogle Scholar
  6. 6.
    Wang B, Koschny T, Soukoulis CM (2010) Wide-angle and polarization-independent chiral metamaterial absorber. Phys Rev B 80(3):033108CrossRefGoogle Scholar
  7. 7.
    Ma Y, Chen Q, Grant J, Saha SC, Khalid A, Cumming DR (2011) A terahertz polarization insensitive dual band metamaterial absorber. Opt Lett 36(6):945–947CrossRefGoogle Scholar
  8. 8.
    Shrekenhamer D, Chen WC, Padilla WJ (2013) Liquid crystal tunable metamaterial absorber. Phys Rev Lett 110(17):177403CrossRefGoogle Scholar
  9. 9.
    Xiao B, Mingyue G, Sanshui X (2017) Broadband, wide-angle and tunable terahertz absorber based on cross-shaped graphene arrays. Appl Opt 56(19):5458CrossRefGoogle Scholar
  10. 10.
    Liu Y, Gu S, Luo C, Zhao X (2012) Ultra-thin broadband metamaterial absorber. Appl Phys A Mater Sci Process 108(1):19–24CrossRefGoogle Scholar
  11. 11.
    Jouvaud C, Ourir A, Rosny JD (2013) Adaptive metamaterial antenna using coupled tunable split-ring resonators. Electron Lett 49(8):518–519CrossRefGoogle Scholar
  12. 12.
    Chen M, Fan F, Shen S, Wang X, Chang S (Aug. 2016) Terahertz ultrathin film thickness sensor below λ/90 based on metamaterial. Appl Opt 55(23):6471CrossRefGoogle Scholar
  13. 13.
    Ekmekci E, Turhan-Sayan G (2013) Multi-functional metamaterial sensor based on a broad-side coupled SRR topology with a multi-layer substrate. Appl Phys A Mater Sci Process 110(1):189–197CrossRefGoogle Scholar
  14. 14.
    Silveirinha MG, Andrea A, Nader E (2008) Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation. Phys Rev B 78(7):075107CrossRefGoogle Scholar
  15. 15.
    Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2018) A perfect metamaterial absorber. Phys Rev Lett 100(20):207402CrossRefGoogle Scholar
  16. 16.
    Grant J, Ma Y, Saha S, Khalid A, David RS (2011) Polarization insensitive, broadband terahertz metamaterial absorber. Opt Lett 36(17):3476–3478CrossRefGoogle Scholar
  17. 17.
    Guo WL, Liu YX, Han TC (2016) Ultra-broadband infrared metasurface absorber. Opt Express 24(18):20586–20592CrossRefGoogle Scholar
  18. 18.
    Zhang C, Cheng Q, Yang J, Zhao J (2017) Broadband metamaterial for optical transparency and microwave absorption. Appl Phys Lett 110(14):143511CrossRefGoogle Scholar
  19. 19.
    Zhang H, Yi Y, Yang J and Liu J, (2018) A band enhanced plasma metamaterial absorber based on triangular ring-shaped resonators. IEEE. Photonics., pp.1-1.Google Scholar
  20. 20.
    Wu PC, Zhu W, Shen ZX, Chong P, Ser W, Tsai DP, Liu AQ (2017) Broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface. Adv Op Mater 5(7):1600938CrossRefGoogle Scholar
  21. 21.
    Smith DR, Vier DC, Koschny T, Soukoulis CM (2005) Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E 71(3):036617CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Electronic and Optical Engineering & College of MicroelectronicsNanjing University of Posts and TelecommunicationsNanjingChina
  2. 2.National Electronic Science and Technology Experimental Teaching Demonstrating CenterNanjing University of Posts and TelecommunicationsNanjingChina
  3. 3.National Information and Electronic Technology Virtual Simulation Experiment Teaching CenterNanjing University of Posts and TelecommunicationsNanjingChina
  4. 4.State Key Laboratory of Millimeter WavesSoutheast UniversityNanjingChina

Personalised recommendations