Advertisement

Plasmonics

pp 1–13 | Cite as

How Backward Poynting Flows Arise for Surface Plasmon Waves with Lossy Metals

  • Hyoung-In LeeEmail author
  • Jinsik Mok
Article
  • 5 Downloads

Abstract

We revisit the surface plasmon resonances established along a planar interface lying between a lossless dielectric and a lossy metal. By examining the orbital and spin parts of the Poynting vector, the mechanisms behind forward or backward flows are clearly illustrated. Consequently, we were able to construct more intuitive pictures of two-dimensional energy flows induced by the metallic losses. In addition, we recognized the importance of both asymmetry and symmetry hidden behind the familiar transverse-magnetic waves. Our numerical results are close to reality, since experimentally observed optical data of gold is employed for a lossy metal.

Keywords

Surface plasmon resonance Poynting vector Metallic loss Orbital part Spin part Light spin Forward flow Backward flow Transmittance Slippage Asymmetry Loss-induced phenomena 

Notes

Funding Information

This study was financially supported by the National Research Foundation (NRF) of Republic of Korea (NRF-2018R1D1A1B07045905).

Supplementary material

11468_2019_1074_MOESM1_ESM.doc (3.5 mb)
ESM 1 (DOC 3538 kb)

References

  1. 1.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer, VerlagCrossRefGoogle Scholar
  2. 2.
    Huang YJ, Lu WT, Sridhar S (2008) Nanowire waveguide made from extremely anisotropic metamaterials. Phys Rev A 77:063836CrossRefGoogle Scholar
  3. 3.
    Kildishev V, Boltasseva A, Shalaev VM (2013) Planar photonics with metasurfaces. Science 339:1232009PubMedCrossRefGoogle Scholar
  4. 4.
    Zhong Y, Malagari SD, Hamilton T, Wasserman DM (2015) Review of mid-infrared plasmonic materials. J Nanophotonics 9:093791CrossRefGoogle Scholar
  5. 5.
    Bliokh KY, Bekshaev AY, Nori F (2017) Optical momentum and angular momentum in complex media: from the Abraham–Minkowski debate to unusual properties of surface plasmon-polaritons. New J Phys 19:123014CrossRefGoogle Scholar
  6. 6.
    Dzedolik IV, Pereskokov VS (2017) Topology of plasmon-polariton vortices on an adaptive mirror. Atmospheric Ocean Opt 30:203–208CrossRefGoogle Scholar
  7. 7.
    Ajib R, Pitelet A, Pollès R, Centeno E, Ajaltouni Z, Moreau A (2019) The energy point of view in plasmonics. J Opt Soc Am B 36:1150–1154CrossRefGoogle Scholar
  8. 8.
    Gao Z, Gao F, Zhang Y, Xu H, Luo Y, Zhang B (2017) Forward/backward switching of plasmonic wave propagation using sign-reversal coupling. Adv Mater 29:1700018CrossRefGoogle Scholar
  9. 9.
    Haffner C, Chelladurai D, Fedoryshyn Y, Josten A, Baeuerle B, Heni W, Watanabe T, Cui T, Cheng B, Saha S, Elder DL, Dalton LR, Boltasseva A, Shalaev VM, Kinsey N, Leuthold J (2018) Low-loss plasmon-assisted electro-optic modulator. Nature 556:483–486PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Novotny L, Hafner C (1994) Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function. Phys Rev E 50:4094CrossRefGoogle Scholar
  11. 11.
    Jiao X, Goeckeritz J, Blair S, Oldham M (2009) Localization of near-field resonances in bowtie antennae: influence of adhesion layers. Plasmonics 4:37–50CrossRefGoogle Scholar
  12. 12.
    Nunes FD, Vasconcelos TC, Bezerra M, Weiner J (2011) Electromagnetic energy density in dispersive and dissipative media. J Opt Soc Am B 28:1544–1552CrossRefGoogle Scholar
  13. 13.
    Caldwell JD, Lindsay L, Giannini V, Vurgaftman I, Reinecke TL, Maier SA, Glembocki OJ (2015) Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4:44–68CrossRefGoogle Scholar
  14. 14.
    Khurgin JB (2015) How to deal with the loss in plasmonics and metamaterials. Nat Nanotechnol 10:2–6PubMedCrossRefGoogle Scholar
  15. 15.
    Boriskina SV, Cooper TA, Zeng L, Ni G, Tong JK, Tsurimaki Y, Huang Y, Meroueh L, Mahan G, Chen G (2017) Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities. Adv Opt Photon 9:775–827CrossRefGoogle Scholar
  16. 16.
    Gapska A, Łapiński M, Syty P, Sadowski W, Sienkiewicz JE, Kościelska B (2018) Au–Si plasmonic platforms: synthesis, structure and FDTD simulations. Beilstein J Nanotechnol 9:2599–2608PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Wolff C, Busch K, Mortensen NA (2018) Modal expansions in periodic photonic systems with material loss and dispersion. Phys Rev B 97:104203CrossRefGoogle Scholar
  18. 18.
    Chang DE, Sørensen AS, Hemmer PR, Lukin MD (2007) Strong coupling of single emitters to surface plasmons. Phys Rev B 76:035420CrossRefGoogle Scholar
  19. 19.
    Ballester D, Tame MS, Kim MS (2010) Quantum theory of surface-plasmon polariton scattering. Phys Rev A 82:012325CrossRefGoogle Scholar
  20. 20.
    Tame MS, McEnery KR, Özdemir SK, Lee J, Maier SA, Kim MS (2013) Quantum plasmonics. Nat Phys 9:329–340CrossRefGoogle Scholar
  21. 21.
    González-Tudela A, Huidobro PA, Martín-Moreno L, Tejedor C, García-Vidal FJ (2014) Reversible dynamics of single quantum emitters near metal-dielectric interfaces. Phys Rev B 89:041402CrossRefGoogle Scholar
  22. 22.
    Dlamini SG, Francis JT, Zhang X, Özdemir ŞK, Chormaic SN, Petruccione F, Tame MS (2018) Probing decoherence in plasmonic waveguides in the quantum regime. Phys Rev Applied 9:024003CrossRefGoogle Scholar
  23. 23.
    Karamlou A, Trusheim ME, Englund D (2018) Metal-dielectric antennas for efficient photon collection from diamond color centers. Opt Express 26:3341–3352PubMedCrossRefGoogle Scholar
  24. 24.
    Siampour H, Kumar S, Davydov VA, Kulikova LF, Agafonov VN, Bozhevolnyi SI (2018) On-chip excitation of single germanium vacancies in nanodiamonds embedded in plasmonic waveguides. Light Sci Appl 7:61PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Xu D, Xiong X, Wu L, Ren XF, Png CE, Guo GC, Gong Q, Xiao YF (2018) Quantum plasmonics: new opportunity in fundamental and applied photonics. Adv Opt Photon 10:703–756CrossRefGoogle Scholar
  26. 26.
    Varguet H, Rousseaux B, Dzsotjan D, Jauslin HR, Guérin S, Colas des Francs G (2019) Non-hermitian Hamiltonian description for quantum plasmonics: from dissipative dressed atom picture to Fano states. J Phys B Atomic Mol Phys 52:055404CrossRefGoogle Scholar
  27. 27.
    Bliokh KY, Nori F (2012) Transverse spin of a surface polariton. Phys Rev A 85:061801CrossRefGoogle Scholar
  28. 28.
    Picardi MF, Bliokh KY, Rodríguez-Fortuño FJ, Alpeggiani F, Nori F (2018) Angular momenta, helicity, and other properties of dielectric-fiber and metallic-wire modes. Optica 5:1016–1026CrossRefGoogle Scholar
  29. 29.
    Bliokh KY, Nori F (2015) Transverse and longitudinal angular momenta of light. Phys Rep 592:1–38CrossRefGoogle Scholar
  30. 30.
    Etchegoin PG, Le Ru EC, Meyer M (2006) An analytic model for the optical properties of gold. J Chem Phys 125:164705PubMedCrossRefGoogle Scholar
  31. 31.
    Derkachova A, Kolwas K, Demchenko I (2016) Dielectric function for gold in plasmonics applications: size dependence of plasmon resonance frequencies and damping rates for nanosphere. Plasmonics 11:941–951PubMedCrossRefGoogle Scholar
  32. 32.
    Kien FL, Busch T, Truong VG, Chormaic SN (2017) Higher-order modes of vacuum-clad ultrathin optical fibers. Phys Rev A 96:023835CrossRefGoogle Scholar
  33. 33.
    Zhu J, Chen Y, Zhang Y, Cai X, Yu S (2014) Spin and orbital angular momentum and their conversion in cylindrical vector vortices. Opt Lett 39:4435–4438PubMedCrossRefGoogle Scholar
  34. 34.
    Lee HI, Mok J (2018) Orbital and spin parts of energy currents for electromagnetic waves through spatially inhomogeneous media. J Mod Opt 65:1053–1062CrossRefGoogle Scholar
  35. 35.
    Quinteiro GF, Tamborenea PI, Berakdar J (2011) Orbital and spin dynamics of intraband electrons in quantum rings driven by twisted light. Opt Express 19:26733–26741PubMedCrossRefGoogle Scholar
  36. 36.
    Schmiegelow CT, Schulz J, Kaufmann H, Ruster T, Poschinger UG, Schmidt-Kaler F (2016) Transfer of optical orbital angular momentum to a bound electron. Nat Commun 7:12998PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Junge C, O’Shea D, Volz J, Rauschenbeutel A (2013) Strong coupling between single atoms and nontransversal photons. Phys Rev Lett 110:213604PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Fong CF, Ota Y, Iwamoto S, Arakawa Y (2018) Scheme for media conversion between electronic spin and photonic orbital angular momentum based on photonic nanocavity. Opt Express 26:21219–21234PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Barnett SM (2002) Optical angular-momentum flux. J Opt B 4:S7–S1CrossRefGoogle Scholar
  40. 40.
    Ballantine KE, Donegan JF, Eastham PR (2016) There are many ways to spin a photon: half-quantization of a total optical angular momentum. Sci Adv 2:e1501748PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Reddy IVAK, Baev A, Furlani EP, Prasad PN, Haus JW (2018) Interaction of structured light with a chiral plasmonic metasurface: giant enhancement of chiro-optic response. ACS Photonics 5:734–740CrossRefGoogle Scholar
  42. 42.
    Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E, Sciarrino F (2011) Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J Opt 13:064001CrossRefGoogle Scholar
  43. 43.
    Neugebauer M, Bauer T, Aiello A, Banzer P (2015) Measuring the transverse spin density of light. Phys Rev Lett 114:063901PubMedCrossRefGoogle Scholar
  44. 44.
    van Mechelen T, Jacob Z (2016) Universal spin-momentum locking of evanescent waves. Optica 3:118–126CrossRefGoogle Scholar
  45. 45.
    Cai X, Wang J, Strain MJ, Johnson-Morris B, Zhu J, Sorel M, O’Brien JL, Thompson MG, Yu S (2012) Integrated compact optical vortex beam emitters. Science 338:363–366PubMedCrossRefGoogle Scholar
  46. 46.
    Boriskina SV, Reinhard BM (2012) Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery. Nanoscale 4:76–90PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Institute of MathematicsSeoul National UniversitySeoulRepublic of Korea
  2. 2.Department of Industrial and Management EngineeringSunmoon UniversityAsan-SeeRepublic of Korea

Personalised recommendations