pp 1–10 | Cite as

Polarization Controlling of Multi Resonant Graphene-Based Microstrip Antenna

  • Mohsen Jafari Chashmi
  • Pejman RezaeiEmail author
  • Narges Kiani


In this paper, a graphene-based patch antenna is proposed. The antenna structure is designed so that each of the various antenna sections affected by chemical potential changes can provide a certain radiation behavior for the antenna far-field. The main purpose of the design is to control the polarization of the antenna only by changing its graphene layer Fermi energy level, so that its physical structure remains fixed. In this way, it is possible to achieve a wideband antenna with a favorable matching in the frequency range of 0.82 to 1.07 THz. It is possible to control its polarization in three states: the right- and left-hand circular polarization with an axial ratio less than 3 dB for a frequency range of 0.975 to 1.025 THz, and linear polarization in frequency range of 0.82 to 1.07 THz. The important point is that the physical structure of the antenna by adding circular layered patches at its edges provided us with the possibility of achieving a circular polarization, and with the creation of multi resonance behavior in the input impedance, provided the possibility of increasing bandwidth, significantly.


Graphene-based antenna Chemical potential Switchable polarization Circular polarization Reconfigurable 


Funding Information

This research was supported by Semnan University.


  1. 1.
    Khani S, Danaie M, Rezaei P (2019) Design of a single-mode plasmonic bandpass filter using a hexagonal resonator coupled to graded-stub waveguides. Plasmonics 14(1):53–62CrossRefGoogle Scholar
  2. 2.
    Kim WK, Oh J, Yoon HS, Kim SJ, Park JY, Jung J, Jun SC (2019) Impedance variation on lattice misoriented few-layer graphene via layer decoupling. IEEE Trans Nanotechnol 18:55–61CrossRefGoogle Scholar
  3. 3.
    Srivastava T, Jha R (2018) Black phosphorus: a new platform for gaseous sensing based on surface plasmon resonance. IEEE Photonics Technol Lett 30(4):319–322CrossRefGoogle Scholar
  4. 4.
    Castellanos-Gomez A (2015) Black phosphorus: narrow gap, wide applications. J Phys Chem Lett 6(21):4280–4291PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Jafari Chashmi M, Rezaei P, Kiani N (2019) Reconfigurable graphene-based v-shaped dipole antenna: from quasi-isotropic to directional radiation pattern. Opt –Int J Light Electron Opt 184:421–427CrossRefGoogle Scholar
  6. 6.
    Ramazannia Tuloti SH, Rezaei P, Tavakkol Hamedani F (2019) Unit-cell with flexible transmission phase slope for ultra wideband transmitarray antennas. IET Microw Antennas Propag DOI. CrossRefGoogle Scholar
  7. 7.
    Jafari Chashmi M, Ghobadi H, Oliaei M (2015) Design and fabrication of aperture coupled microstrip increased bandwidth antenna. App Compute Electromagn Soc J 30(10):1109–1114Google Scholar
  8. 8.
    Ramazannia Tuloti SH, Rezaei P, Tavakkol Hamedani F (2018) High-efficient wideband transmitarray antenna. IEEE Antennas Wireless Propag Lett 17(5):817–820CrossRefGoogle Scholar
  9. 9.
    Fakharian MM, Rezaei P, Orouji AA (2016) Polarization and radiation pattern reconfigurability of a planar monopole-fed loop antenna for GPS application. Radioengineering J 25(4):680–686CrossRefGoogle Scholar
  10. 10.
    Mousavi Z, Rezaei P, Rafii V (2017) Single layer CPSSA array with change polarization diversity in broadband application. Int J RF Microw Comp-Aided Eng 27(4):1–8Google Scholar
  11. 11.
    Fakharian MM, Rezaei P, Orouji AA (2015) Reconfigurable multilane extended U-slot antenna with switchable polarization for wireless applications. IEEE Antennas Propag Mag 57(2):194–202CrossRefGoogle Scholar
  12. 12.
    Wang G, Zhu J, Wei D, Jiang F, Huang Y (2019) Enhanced air microcavity of channel SPP waveguide HAL by graphene material. Plasmonics 14(2):313–320CrossRefGoogle Scholar
  13. 13.
    Dehghan M, Moravvej-Farshi MK, Ghaffari-Miab M, Darvish G (2019) Ultra-compact spatial terahertz switch based on graphing plasmonic-coupled waveguide. Plasmonics Available Online:1–11.
  14. 14.
    Liu Q, Liu M, Zhan S, Wu L, Xie S, Chen Z, Zhang Y (2018) Tunable Fano resonance based mode interference in waveguide-cavity-graphene hybrid structure. Plasmonics Available Online 14:1005–1011. CrossRefGoogle Scholar
  15. 15.
    Zheng P, Yang H, Fan M, Hu G, Zhang R, Yun B, Cui Y (2018) A hybrid plasmonic modulator based on graphene on channel plasmonic polariton waveguide. Plasmonics 13(6):2029–2035CrossRefGoogle Scholar
  16. 16.
    Zhu J, Xu Z, Xu W, Fu D, Wei D (2018) Surface plasmon polariton waveguide by bottom and top of graphene. Plasmonics 13(5):1513–1522CrossRefGoogle Scholar
  17. 17.
    Jaiswal RK, Pundit N, Pathak NP (2019) Center frequency and bandwidth reconfigurable spoof surface plasmonic metamaterial band-pass filter. Plasmonics Available Online:1–8.
  18. 18.
    Tavousi A, Mansouri-Birjandi MA, Janfaza M (2019) Graphene nanoribbon assisted refractometer based biosensor for mid-infrared label-free analysis. Plasmonics Available Online 14:1207–1217. CrossRefGoogle Scholar
  19. 19.
    Huang Z, Dai Y, Su G, Yan Z, Zhan P, Liu F, Wang Z (2018) Dynamically tunable electromagnetically induced transparency in graphene and split-ring hybrid metamaterial. Plasmonics 13(2):451–457CrossRefGoogle Scholar
  20. 20.
    Wei B, Jian S (2018) A nanoscale Fano resonator by graphene-gold dipolar interference. Plasmonics 13(6):1889–1895CrossRefGoogle Scholar
  21. 21.
    Moazami A, Hashemi M, Cheraghi Shirazi N (2019) High efficiency tunable graphene-based plasmonic filter in the THz frequency range. Plasmonics 14(2):359–363CrossRefGoogle Scholar
  22. 22.
    Jiang L-H, Wang F, Liang R, Wei Z, Meng H, Dong H, Cen H (2018) Tunable terahertz filters based on graphene plasmonic all-dielectric metasurfaces. Plasmonics 13(2):525–530CrossRefGoogle Scholar
  23. 23.
    Feng Y, Liu Y, Wang X, Dong D, Shi Y, Tang L (2018) Tunable multichannel plasmonic filter based on a single graphene sheet on a Fibonacci quasiperiodic structure. Plasmonics 13(2):653–659CrossRefGoogle Scholar
  24. 24.
    Deng Q, Shao H, He W, Cheng K, Hu J, Sun B, Wang X, Liu G, Wang J (2018) Adjustable plasmonic multi-channel demultiplexer with graphene sheets and ring resonators. Plasmonics Available Online 14:993–998. CrossRefGoogle Scholar
  25. 25.
    Kiani N, Afsahi M (2019) Design and fabrication of a compact SIW diplexer in C-band. Iranian J Electr Electron Eng (IJEEE) 15(2):189–194Google Scholar
  26. 26.
    Ghasemi M, Choudhury PK, Baqir MA (2019) On the double nano-coned graphite metasurface-based multilane CIC absorber. Plasmonics Available Online 14:1189–1195. CrossRefGoogle Scholar
  27. 27.
    Xiong H, Tang M-C, Li M, Li D, Jiang Y-N (2018) Equivalent circuit method analysis of graphene-metamaterial (GM) absorber. Plasmonics 13(3):857–862CrossRefGoogle Scholar
  28. 28.
    Zhao Z, Li G, Yu F, Yang H, Chen X, Lu W (2018) Sub-wavelength grating enhanced ultra-narrow graphene perfect absorber. Plasmonics 13(6):2267–2272CrossRefGoogle Scholar
  29. 29.
    Rashiditabar R, Nozhat N, Zare MS (2018) Tunable plasmonic absorber based on TiN-nanosphere liquid crystal hybrid in visible and near-infrared regions. Plasmonics 13(6):1853–1859CrossRefGoogle Scholar
  30. 30.
    Deng Y-W, Peng L, Liao X, Jiang X (2018) An ultra-broadband terahertz absorber based on coplanar graphene and gold hybridized metasurface. Plasmonics Available Online 14:1057–1061. CrossRefGoogle Scholar
  31. 31.
    Sun L-P, Zhai X, Lin Q, Liu G-D, Wang L-L (2018) Tunable nearly perfect absorber based on graphene metamaterials at the mid-infrared region. Plasmonics 13(3):1043–1048CrossRefGoogle Scholar
  32. 32.
    Luan J, Fan M, Zheng P, Yang H, Hu G, Yun B, Cui Y (2019) Design and optimization of a graphene modulator based on hybrid plasmonic waveguide with double low-index slots. Plasmonics 14(1):133–138CrossRefGoogle Scholar
  33. 33.
    Wu Y, Qu M, Jiao L, Liu Y (2017) Tunable terahertz filter-integrated quasi-Yagi antenna based on graphene. Plasmonics 12(3):811–817CrossRefGoogle Scholar
  34. 34.
    Nissiyah GJ, Madhan MG (2018) Graphene-based photoconductive antenna structures for directional terahertz emission. Plasmonics Available Online 14:891–900. CrossRefGoogle Scholar
  35. 35.
    Giddens H, Yang L, Tina J, Hao Y (2018) Mid-infrared reflect-array antenna with beam switching enabled by continuous graphene layer. IEEE Photon Technol Lett 30(8):748–751CrossRefGoogle Scholar
  36. 36.
    Fuscaldo W, Burghignoli P, Baccarrelli P, Galli A (2017) Graphene Fabry-Perot cavity leaky-wave antennas: plasmonic versus non-plasmonic solutions. IEEE Trans Antennas Propag 65(4):1651–1660CrossRefGoogle Scholar
  37. 37.
    Sikdar D, Zhu W, Cheng W, Premaratne M (2015) Substrate-mediated broadband tunability in plasmonic resonances of metal nanoantennas on finite high-permittivity dielectric substrate. Plasmonics 10(6):1663–1673CrossRefGoogle Scholar
  38. 38.
    Zhu B, Ren G, Gao Y, Wu B, Lian Y, Jian S (2017) Creation of graphene plasmons vortex via cross shape nanoantennas under linearly polarized incidence. Plasmonics 12(3):863–868CrossRefGoogle Scholar
  39. 39.
    Aditya RANS, Thampy AS (2019) Behavioral and modal analysis of graphene-based polygonal optical antenna for enhanced bio-molecular detection. Plasmonics 14(2):293–302CrossRefGoogle Scholar
  40. 40.
    Liu H, Sun S, Wu L, Bai P (2014) Optical near-field enhancement with graphene bowtie antennas. Plasmonics 9(4):845–850CrossRefGoogle Scholar
  41. 41.
    Dash S, Patnaik A (2018) Performance of graphene plasmonic antenna in comparison with their counterparts for low-terahertz applications. Plasmonics 13(6):2353–2360CrossRefGoogle Scholar
  42. 42.
    Ekşioğlu Y, Cetin AE, Durmaz H (2018) Multi-band plasmonic platform utilizing UT-shaped graphene antenna arrays. Plasmonics 13(3):1081–1088CrossRefGoogle Scholar
  43. 43.
    Computer Simulation Technology (CST), CST Microwave Studio Ver. 2015.
  44. 44.
    Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl Phys 103:064302CrossRefGoogle Scholar
  45. 45.
    Slepyan GY, Maksimenko SA, Lakhtakia A, Yevtushenko O, Gusakov AV (1999) Electrodynamics of carbon nanotubes: dynamic conductivity, impedance boundary conditions, and surface wave propagation. Phys Rev B 60:17136CrossRefGoogle Scholar
  46. 46.
    Hanson GW (2008) Dyadic Green’s functions for an anisotropic, non-local model of biased graphene. IEEE Trans Antennas Propag 56(3):747–757CrossRefGoogle Scholar
  47. 47.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Ryzhii V, Satou A, Otsuji T (2007) Plasma waves in two-dimensional electron-hole system in gated graphene heterostructures. J Appl Phys 101:024509CrossRefGoogle Scholar
  49. 49.
    Falkovsky LA (2007) Unusual field and temperature dependence of the hall effect in graphene. Phys Rev B 75:033409CrossRefGoogle Scholar
  50. 50.
    Gusynin VP, Sharapov SG, Carbotte JP (2007) Magneto-optical conductivity in graphene. J Phy Condens Matter 19(2):026222CrossRefGoogle Scholar
  51. 51.
    Thampy AS, Darak MS, Dhamodharan SK (2015) Analysis of graphene based optically transparent patch antenna for terahertz communications. Physica E 66:67–73CrossRefGoogle Scholar
  52. 52.
    Wibbeler J, Pfeifer G, Hietschold M (1998) Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems (MEMS). Sens Actuators A Phys 71(1–2):74–80CrossRefGoogle Scholar
  53. 53.
    Gómez-Díaz JS, Esquius-Morote M, Perruisseau-Carrier J (2013) Plane wave excitation-detection of non-resonant plasmons along finite-width graphene strips. Opt Express 21(21):24856–24872PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Electrical and Computer Engineering FacultySemnan UniversitySemnanIran

Personalised recommendations