pp 1–10 | Cite as

Enhancing Non-linear Response of Fullerene via Incorporation of Gold Nanoparticles

  • Ritu Vishnoi
  • Satakshi Gupta
  • Jyotsna Bhardwaj
  • Rahul SinghalEmail author


Bi-functional nanocomposite thin films of fullerene C60 and C70 containing Au NPs were synthesized using thermal co-evaporation method. Different atomic concentrations of Au metal varying from 5 to 35 at.% was chosen to get the Au NPs with different sizes in fullerene matrix. The thickness of films and metal concentration is confirmed by Rutherford backscattering spectroscopy (RBS). UV-visible spectrum shows the excitation of SPR band in all samples except for the lowest metal concentration which is ~ 5 at.% and SPR is red shifted with increasing concentration of Au. The shift in SPR position with increasing metal concentration for both Au-C60 and Au-C70 is nearly linear. X-ray diffraction spectroscopy indicates the formation of bigger size particles with increasing metal concentration in both the cases of Au-C60 and Au-C70, which is further confirmed by transmission electron microscopy results. Au-C60 and Au-C70 (could) be interesting nanocomposites for surface-enhanced Raman scattering studies.


Nanoparticles Surface-enhanced Raman spectroscopy Surface plasmon resonance Optical properties 



The authors are thankful to Materials Research Centre (MRC), MNIT, Jaipur, for providing experimental characterization facilities.

Funding Information

R. Singhal and J. Bhardwaj are also thankful to CSIR New Delhi (Ref: 03(1408)/17/EMR-II) and DST New Delhi (EMR/2016/005208) for their financial support to carry out the experimental research work.


  1. 1.
    Kaczmar JW, Pietrzak K, Włosiński W (2000) The production and application of metal matrix composite materials. J Mater Process Technol 106(1-3):58–67. CrossRefGoogle Scholar
  2. 2.
    Inani H, Singhal R, Sharma P, Vishnoi R, Aggarwal S, Sharma GD (2017) Effect of low fluence radiation on nanocomposite thin films of Cu nanoparticles embedded in fullerene C60. Vacuum 142:5–12. CrossRefGoogle Scholar
  3. 3.
    Gupta A, Singhal R, Narayan J, Avasthi DK (2011) Electronic excitation induced controlled modifications of semiconductor-to-metal transition in epitaxial VO2thin films. J Mater Res 26:2901–2906. CrossRefGoogle Scholar
  4. 4.
    Chen KM, Wu K, Chen Y et al (1995) Heterojunctions of solid C70 and crystalline silicon: rectifying properties and barrier heights. Appl Phys Lett 67:1683. CrossRefGoogle Scholar
  5. 5.
    Jensen AW, Wilson SR, Schuster DI (1996) Biological applications of fullerenes. Bioorg Med Chem 4:767–779. CrossRefPubMedGoogle Scholar
  6. 6.
    Bashiri S, Vessally E, Bekhradnia A et al (2017) Utility of extrinsic [60] fullerenes as work function type sensors for amphetamine drug detection: DFT studies. Vacuum 136:156–162. CrossRefGoogle Scholar
  7. 7.
    Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors. Sensors Actuators B Chem 54(1-2):3–15. CrossRefGoogle Scholar
  8. 8.
    Yao M, Jia X, Liu Y, Guo W, Shen L, Ruan S (2015) Surface plasmon resonance enhanced polymer solar cells by thermally evaporating Au into buffer layer. ACS Appl Mater Interfaces 7(33):18866–18871. CrossRefPubMedGoogle Scholar
  9. 9.
    Shen P, Liu Y, Long Y, Shen L, Kang B (2016) High-performance polymer solar cells enabled by copper nanoparticles-induced plasmon resonance enhancement. J Phys Chem C 120(16):8900–8906. CrossRefGoogle Scholar
  10. 10.
    Xu P, Shen L, Meng F, Zhang J, Xie W, Yu W, Guo W, Jia X, Ruan S (2013) The role of Ag nanoparticles in inverted polymer solar cells: surface plasmon resonance and backscattering centers. Appl Phys Lett 102(12):53. CrossRefGoogle Scholar
  11. 11.
    Weaver MJ, Zou S, Chan HYH (2000) Peer reviewed: the new interfacial ubiquity of surface-enhanced Raman spectroscopy. Anal Chem 72:38 A–47 A. CrossRefGoogle Scholar
  12. 12.
    Medda SK, De S, De G (2005) Synthesis of Au nanoparticle doped SiO2–TiO2 films: tuning of Au surface plasmon band position through controlling the refractive index. J Mater Chem 15:3278. CrossRefGoogle Scholar
  13. 13.
    Singhal R, Agarwal DC, Mishra YK et al (2009) Electronic excitation induced tuning of surface plasmon resonance of Ag nanoparticles in fullerene C 70 matrix. J Phys D Appl Phys 42:155103. CrossRefGoogle Scholar
  14. 14.
    Amendola V, Meneghetti M (2012) Advances in self-healing optical materials. J Mater Chem 22(47):24501–24508. CrossRefGoogle Scholar
  15. 15.
    Arbogast JW, Darmanyan AP, Foote CS et al (1991) Photophysical properties of C60. J Phys Chem 95:11–12. CrossRefGoogle Scholar
  16. 16.
    Chambers G, Dalton AB, Evans LM, Byrne HJ (2001) Observation and identification of the molecular triplet in C60 thin films. Chem Phys Lett 345:361–366. CrossRefGoogle Scholar
  17. 17.
    Bindhu CV, Harilal SS, Nampoori VPN, Vallabhan CPG (2000) Experimental investigation of optical limiting and thermal lensing in toluene solutions of C-70. Appl Phys B-Lasers Opt 70:429–434. CrossRefGoogle Scholar
  18. 18.
    Heflin JR, Garito AF (1992) Optics beyond the limits. Nature 356:192–193CrossRefGoogle Scholar
  19. 19.
    Vincent D, Cruickshank J (1997) Optical limiting with C(60) and other fullerenes. Appl Opt 36:7794–7798. CrossRefPubMedGoogle Scholar
  20. 20.
    Kost A, Dougherty TK, Elias WE et al (1993) Optical limiting with C_60 in polymethyl methacrylate. Opt Lett 18:334–336. CrossRefPubMedGoogle Scholar
  21. 21.
    Brant MC, Brandelik DM, McLean DG et al (1994) Optical limiting mechanisms in C 60 solutions. Mol Cryst Liq Cryst Sci Technol Sect A Mol Cryst Liq Cryst 256:807–812. CrossRefGoogle Scholar
  22. 22.
    Philip R, Kumar GR, Sandhyarani N, Pradeep T (2000) Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters. Phys Rev B - Condens Matter Mater Phys 62:13160–13166. CrossRefGoogle Scholar
  23. 23.
    Gao Y, Wang Y, Song Y et al (2003) Strong optical limiting property of a novel silver nanoparticle containing C60 derivative. Opt Commun 223:103–108. CrossRefGoogle Scholar
  24. 24.
    Amendola V, Mattei G, Cusan C, et al (2005) Fullerene non-linear excited state absorption induced by gold nanoparticles light harvesting. Synth Metals 283–286.
  25. 25.
    Singhal R, Vishnoi R, Sharma P, et al (2017) Synthesis, characterization and thermally induced structural transformation of Au-C70 nanocomposite thin films. Vacuum 142.
  26. 26.
    Singhal R, Vishnoi R, Sharma P et al (2017) Thermally induced tuning of SPR of metal-fullerene Ag(26%)-C70 nanocomposite. Surf Coat Technol 324:361–367. CrossRefGoogle Scholar
  27. 27.
    Singhal R, Vishnoi R, Inani H, Sharma P, Venkataratnam KK, Avasthi DK (2017) Investigations on the thermal stability of fullerene-based (Ag-C70) nanocomposite thin films. Plasmonics 12:1701–1708. CrossRefGoogle Scholar
  28. 28.
    Singhal R, Bhardwaj J, Vishnoi R et al (2018) Low energy ion irradiation induced SPR of Cu-fullerene C70 nanocomposite thin films. J Alloys Compd 767:733–744. CrossRefGoogle Scholar
  29. 29.
    Al-Mohamad A, Allaf AW (1999) Fullerene-60 thin films for electronic applications. Synth Met 104:39–44. CrossRefGoogle Scholar
  30. 30.
    Singhal R, Sharma P, Vishnoi R, Avasthi DK (2017) Synthesis and characterizations of Au-C60 nanocomposite. J Alloys Compd 696:9–15. CrossRefGoogle Scholar
  31. 31.
    Vishnoi R, Gupta S, Sharma GD, Singhal R (2019) Large tuning of surface plasmon resonance of Au–fullerene nanocomposite. Electron Mater Lett 15(1):111–118. CrossRefGoogle Scholar
  32. 32.
    Singhal R, Pivin JC, Avasthi DK (2013) Ion beam irradiation-induced tuning of SPR of Au nanoparticles in fullerene C 70 matrix: dependence of energy loss. J Nanopart Res 15(5):1641–1610. CrossRefGoogle Scholar
  33. 33.
    Doolittle LR (1985) Algorithms for the rapid simulation of Rutherford backscattering spectra. Nucl Inst Methods Phys Res B 9:344–351. CrossRefGoogle Scholar
  34. 34.
    Bader G, Ashrit PV, Truong VV (1998) Transmission and reflection ellipsometry of thin films and multilayer systems. Appl Opt 37:1146–1151. CrossRefPubMedGoogle Scholar
  35. 35.
    Truong VV, Scott GD (1977) Optical properties of aggregated noble metal films. J Opt Soc Am 67:502–510. CrossRefGoogle Scholar
  36. 36.
    Mohapatra S, Mishra YK, Avasthi DK et al (2008) Synthesis of gold-silicon core-shell nanoparticles with tunable localized surface plasmon resonance. Appl Phys Lett 92:103103–103105. CrossRefGoogle Scholar
  37. 37.
    Mishra YK, Mohapatra S, Avasthi DK et al (2007) Gold-silica nanocomposites for the detection of human ovarian cancer cells: a preliminary study. Nanotechnology 18.
  38. 38.
    Xu G, Tazawa M, Jin P, Nakao S (2005) Surface plasmon resonance of sputtered Ag films: substrate and mass thickness dependence. Appl Phys A Mater Sci Process 80:1535–1540. CrossRefGoogle Scholar
  39. 39.
    Meilunas R, Chang RPH, Liu S et al (1991) Infrared and Raman spectra of C60 and C70 solid films at room temperature. J Appl Phys 70:5128. CrossRefGoogle Scholar
  40. 40.
    Dennis TJ, Hare JP, Kroto HW et al (1991) The vibrational Raman spectra of C60 and C70. Spectrochim Acta Part A Mol Spectrosc 47:1289–1292. CrossRefGoogle Scholar
  41. 41.
    Bethune DS, Meijer G, Tang WC et al (1991) Vibrational Raman and infrared spectra of chromatographically separated C60 and C70 fullerene clusters. Chem Phys Lett 179:181–186. CrossRefGoogle Scholar
  42. 42.
    Dresselhaus MS, Dresslhaus G (1995) Fullerenes and fullerene derived solids as electronic materials. Annu Rev Mater Sci 25:487–523. CrossRefGoogle Scholar
  43. 43.
    Jishi RA, Mirie RM, Dresselhaus MS (1992) Force-constant model for the vibrational-modes in C 60. Phys Rev B 45:13685–13689. CrossRefGoogle Scholar
  44. 44.
    Sun G, Kertesz M (2002) Vibrational Raman spectra of C 70 and C 70 6- studied by Density Functional Theory. J Phys Chem A 106:6381–6386. CrossRefGoogle Scholar
  45. 45.
    Gunasekaran S, Uthra D (2008) Fourier transform infrared and Fourier transform Raman spectra and normal coordinate analysis of ethyleneimine. Indian J Pure Appl Phys 46:100–105Google Scholar
  46. 46.
    Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783–826. CrossRefGoogle Scholar
  47. 47.
    Drachev VP, Nashine VC, Thoreson MD, Ben-Amotz D, Davisson VJ, Shalaev VM (2005) Adaptive silver films for detection of antibody-antigen binding. Langmuir 21:8368–8373. CrossRefPubMedGoogle Scholar
  48. 48.
    Gong JL, Jiang JH, Yang HF et al (2006) Novel dye-embedded core-shell nanoparticles as surface-enhanced Raman scattering tags for immunoassay. Anal Chim Acta 564:151–157. CrossRefGoogle Scholar
  49. 49.
    Kumar GVP, Shruthi S, Vibha B et al (2007) Hot spots in Ag core - Au shell nanoparticles potent for surface-enhanced Raman scattering studies of biomolecules. J Phys Chem C 111:4388–4392. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsMalaviya National Institute of TechnologyJaipurIndia

Personalised recommendations