Advertisement

Plasmonics

pp 1–9 | Cite as

Impact of the Coulomb Potential and the Electrostatic Potential on the Eigen-Frequencies of the Coupled Plasmons

  • Lulu Guan
  • Jing Zhang
  • Yonggang Xu
  • Jianxin Zhang
  • Yongfang LiEmail author
Article
  • 35 Downloads

Abstract

In this paper, a coupled oscillator model is employed to describe the eigen-frequencies of the coupled plasmons, which are dominated by the coupled coefficient and the frequency offset defined by us. From this, we present a novel physical model to describe the influence of the Coulomb potential and the electrostatic potential (CPEP) on the coupled coefficient and the frequency offset. Based on the finite element method, we simulate numerically the evolution of the absorption spectra of the microstructure unit composed of a simply metal nanostructure. The simulated results show that two resonant absorption peaks are asymmetrical with the change of the coupling distance between the nano-elements. With the CPEP model, we not only explain successfully the asymmetrical behaviors of the peaks values of the absorption spectra with the change of the coupling distance but also obtain the resonant frequencies for different plasmons. The absorption spectra are simulated by the harmonic oscillator model, in which their calculated parameters originate from the CPEP model, and the results are very well association with those of the numerical simulation.

Keywords

Eigen-frequencies Frequency offset Coulomb potential and electrostatic potential Harmonic oscillator model 

Notes

Funding

This work was supported by the National Natural Science Foundation of China (NSFC) (No. 11474191) and the Natural Science Foundation of Shaanxi Province (No. 2018JQ1050).

References

  1. 1.
    Wu K, Chen J, McBride JR, Lian T (2015) Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 349(6248):632–635PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Ahmadivand A, Sinha R, Gerislioglu B, Karabiyik M, Pala N, Shur M (2016) Transition from capacitive coupling to direct charge transfer in asymmetric terahertz plasmonic assemblies. Opt Lett 41(22):5333–5336PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Wu PC, Liao CY, Savinov V, Chung TL, Chen WT, Huang YW, Wu PR, Chen YH, Liu AQ, Zheludev NI, Tsai DP (2018) Optical anapole metamaterial. ACS Nano 12(2):1920–1927PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Basharin AA, Chuguevsky V, Volsky N, Kafesaki M, Economou EN (2017) Extremely high Q-factor metamaterials due to anapole excitation. Phys Rev B 95(3):035104CrossRefGoogle Scholar
  5. 5.
    Kaelberer T, Fedotov VA, Papasimakis N, Tsai DP, Zheludev NI (2010) Toroidal dipolar response in a metamaterial. Science 330(6010):1510–1512PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Marinov K, Boardman AD, Fedotov VA, Zheludev N (2007) Toroidal metamaterial. New J Phys 9(9):324CrossRefGoogle Scholar
  7. 7.
    Ahmadivand A, Gerislioglu B (2018) Directional toroidal dipoles driven by oblique poloidal and loop currents flows in plasmonic meta-atom. J Phys Chem C 122(42):24304–24308CrossRefGoogle Scholar
  8. 8.
    Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101(4):047401PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Miroshnichenko AE, Flach S, Kivshar YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82(3):2257CrossRefGoogle Scholar
  10. 10.
    Hao F, Sonnefraud Y, Dorpe PV, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 8(11):3983–3988PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Dong ZG, Liu H, Cao JX, Li T, Wang SM, Zhu SN, Zhang X (2010) Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials. Appl Phys Lett 97(11):114101CrossRefGoogle Scholar
  12. 12.
    Hokari R, Kanamori Y, Hane K (2014) Fabrication of planar metamaterials with sharp and strong electromagnetically induced transparency like characteristics at wavelengths around 820 nm. J Opt Soc Am B 31(5):1000–1005CrossRefGoogle Scholar
  13. 13.
    Kekatpure RD, Barnard ES, Cai W, Brongersma ML (2010) Phase-coupled plasmon-induced transparency. Phys Rev Lett 104(24):243902PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Wang G, Lu H, Liu X (2012) Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparenc. Opt Express 20(19):20902–20907PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Yang ZJ, Zhang ZS, Zhang LH, Li QQ, Hao ZH, Wang QQ (2011) Fano resonances in dipole-quadrupole plasmon coupling nanorod dimmers. Opt Lett 36(9):1542–1544PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Luk'yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9(9):707–715PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Mukherjee S, Sobhani H, Lassiter JB, Bardhan R, Nordlander P, Halas NJ (2010) Fanoshells: nanoparticles with built-in Fano resonances. Nano Lett 10(7):2694–2701PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Zhang S, Li GC, Chen Y, Zhu X, Liu SD, Lei DY, Duan H (2016) Pronounced Fano resonance in single gold split nanodisks with 15 nm split gaps for intensive second harmonic generation. ACS Nano 10(12):11105–11114PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 8(9):758–762PubMedCrossRefGoogle Scholar
  20. 20.
    Cui C, Zhou C, Yuan S, Qiu X, Zhu L, Wang Y, Li Y, Song J, Huang Q, Wang Y, Zeng C, Xia J (2018) Multiple Fano resonances in symmetry-breaking Silicon metasurface for manipulating light emission. ACS Photonics 5(10):4074–4080CrossRefGoogle Scholar
  21. 21.
    Ai B, Song C, Bradley L, Zhao Y (2018) Strong Fano resonance excited in an array of nanoparticle-in-ring nanostructures for dual plasmonic sensor applications. J Phys Chem C 122(36):20935–20944CrossRefGoogle Scholar
  22. 22.
    Dong ZG, Liu H, Xu MX, Li T, Wang SM, Zhu SN, Zhang X (2010) Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars. Opt Express 18(17):18229–18234PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Tian Y, Ding P, Fan C (2017) Tunable plasmon-induced transparency in plasmonic metamaterial composed of three identical rings. Opt Eng 56(10):107106CrossRefGoogle Scholar
  24. 24.
    Xia SX, Zhai X, Wang LL, Sun B, Liu JQ, Wen SC (2016) Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers. Opt Express 24(16):17886–17899PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Vafapour Z, Alaei H (2017) Achieving a high Q-factor and tunable slow-light via classical electromagnetically induced transparency (Cl-EIT) in metamaterials. Plasmonics 12(2):479–488CrossRefGoogle Scholar
  26. 26.
    Stete F, Koopman W, Bargheer M (2017) Signatures of strong coupling on nanoparticles: revealing absorption anticrossing by tuning the dielectric environment. ACS Photonics 4(7):1669–1676CrossRefGoogle Scholar
  27. 27.
    Lee S, Park Y, Kim J, Roh YG, Park QH (2018) Selective bright and dark mode excitation in coupled nanoantennas. Opt Express 26(17):21537–21545PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Bakhti S, Tishchenko AV, Zambrana-Puyalto X, Bonod N, Dhuey SD, Schuck PJ, Cabrini S, Alayoglu S, Destouches N (2016) Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles. Sci Rep 6:32061PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Yin S, Lu X, Xu N, Wang S, Yiwen E, Pan X, Xu X, Liu H, Chen L, Zhang W, Wang L (2015) Spoof surface plasmon polaritons in terahertz transmission through subwavelength hole arrays analyzed by coupled oscillator model. Sci Rep 5:16440PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Sarkar M, Bryche JF, Moreau J, Besbes M, Barbillon G, Bartenlian B, Canva M (2015) Generalized analytical model based on harmonic coupling for hybrid plasmonic modes: comparison with numerical and experimental results. Opt Express 23(21):27376–27390PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Garrido Alzar CL, Martinez MAG, Nussenzveig P (2002) Classical analog of electromagnetically induced transparency. Am J Phys 70(1):37–41CrossRefGoogle Scholar
  32. 32.
    Lassiter JB, Sobhani H, Knight MW, Mielczarek WS, Nordlander P, Halas NJ (2012) Designing and deconstructing the Fano lineshape in plasmonic nanoclusters. Nano Lett 12(2):1058–1062PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Lovera A, Gallinet B, Nordlander P, Martin OJF (2013) Mechanisms of Fano resonances in coupled plasmonic systems. ACS Nano 7(5):4527–4536PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Cheng H, Chen S, Yu P, Duan X, Xie B, Tian J (2013) Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips. Appl Phys Lett 103(20):203112CrossRefGoogle Scholar
  35. 35.
    Zuloaga J, Nordlander P (2011) On the energy shift between near-field and far-field peak intensities in localized plasmon systems. Nano Lett 11(3):1280–1283PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Davis TJ, Gómez DE (2017) Colloquium: an algebraic model of localized surface plasmons and their interactions. Rev Mod Phys 89(1):011003CrossRefGoogle Scholar
  37. 37.
    Ma PP, Zhang J, Liu HH, Zhang J, Xu YG, Wang J, Zhang MQ, Li YF (2016) Plasmon induced transparency in the trimer of gold nanorods. Acta Phys Sin 65(21):217801Google Scholar
  38. 38.
    Zhang J, Xu YG, Zhang J, Ma PP, Zhang MQ, Li YF (2018) Extended coupled Lorentz oscillator model and analogue of electromagnetically induced transparency in coupled plasmonic structures. J Opt Soc Am B 35(8):1854–1860CrossRefGoogle Scholar
  39. 39.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379CrossRefGoogle Scholar
  40. 40.
    Sidorenko S, Martin OJF (2007) Resonant tunneling of surface plasmon-polaritons. Opt Express 15(10):6380–6388PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Berenger JP (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114(2):185–200CrossRefGoogle Scholar
  42. 42.
    Mittra R, Pekel U (1995) A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves. IEEE Microwave Guid Wave Lett 5(3):84–86CrossRefGoogle Scholar
  43. 43.
    Novotny L (2007) Effective wavelength scaling for optical antennas. Phys Rev Lett 98(26):266802PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Cho DJ, Wang F, Zhang X, Shen YR (2008) Contribution of the electric quadrupole resonance in optical metamaterials. Phys Rev B 78(12):121101CrossRefGoogle Scholar
  45. 45.
    Klar T, Perner M, Grosse S, Von Plessen G, Spirkl W, Feldmann J (1998) Surface-plasmon resonances in single metallic nanoparticles. Phys Rev Lett 80(19):4249CrossRefGoogle Scholar
  46. 46.
    Ahmadivand A, Gerislioglu B, Ramezani Z (2019) Generation of magnetoelectric photocurrents using toroidal resonances: a new class of infrared plasmonic photodetectors. Nanoscale 11:13108–13116PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Lulu Guan
    • 1
  • Jing Zhang
    • 1
    • 2
  • Yonggang Xu
    • 1
    • 3
  • Jianxin Zhang
    • 1
  • Yongfang Li
    • 1
    Email author
  1. 1.School of Physics and Information TechnologyShaanxi Normal UniversityXi’anChina
  2. 2.School of Electronic EngineeringXi’an Shiyou UniversityXi’anChina
  3. 3.School of ScienceXi’an University of Posts and TelecommunicationsXi’anChina

Personalised recommendations