Advertisement

Plasmonics

pp 1–11 | Cite as

Transition Metal Dichalcogenides/Gold-Based Surface Plasmon Resonance Sensors: Exploring the Geometrical and Material Parameters

  • Pericle VarasteanuEmail author
Article
  • 43 Downloads

Abstract

In this study, we explored the geometrical and material parameters of surface plasmon resonance (SPR) sensors, in order to gain insight about the mechanisms that control the sensors’ response when different 2D materials monolayers (MoS2, MoSe2, WS2, WSe2) are used to modify the surface. Accordingly, the surface plasmons’ (SPs) dispersion relations, the reflectivity maps and both reflectivity and phase responses for the visible and near-infrared wavelengths range (400–1400 nm), were systematically investigated by using COMSOL Multiphysics (RF Module) and transfer matrix method (TMM) algorithm considering a modified Kretschmann configuration. We showed that the sensitivity of the modified structures is enhanced for wavelengths between 600 and 1000 nm both in reflectivity and phase. By evaluating also the influence of the number of 2D material monolayers, the highest sensitivity in reflectivity was obtained at 700 nm when five monolayers of MoS2 were added, reaching 220 deg/RIU for a change in dielectric’s refractive index of 0.002 RIU, which is 45% higher than that of the standard bare structure. Regarding the phase response, it was shown that by adding only one monolayer of MoS2, a sensitivity of 9 × 105 deg/RIU is achieved for a refractive index change of 10−6 RIU.

Keywords

SPR sensor 2D materials Dispersion relations Sensitivity enhancement Phase response 

Notes

Acknowledgments

Pericle Varasteanu thanks Dr. Cristian Kusko of the IMT Bucharest for stimulating discussions.

Funding Information

This work was supported by a grant of Ministry of Research and Innovation, CNCS-UEFISCDI, projects’ number PN-III-P4-ID-PCE-2016-0618 and PN-III-P1-1.2-PCCDI-2017-0820, within PNCDI III.

References

  1. 1.
    Cada M, Blazek D, Pistora J, Postava K, Siroky P (2015) Theoretical and experimental study of plasmonic effects in heavily doped gallium arsenide and indium phosphide. Opt Mater Express 5:2Google Scholar
  2. 2.
    Xiangjun L, Jian S, John XJZ (2015) Integrated terahertz surface plasmon resonance on polyvinylidene fluoride layer for the profiling of fluid reflectance spectra. Plasmonics 11(4):1093–1100Google Scholar
  3. 3.
    Economou EN (1969) Surface plasmons in thin films. Phys Rev 182:2Google Scholar
  4. 4.
    Kretschmann E, Raether H (1968) Radiative decay of non radiative surface plasmons excited by light. Z Naturforsch A 23:2135–2136Google Scholar
  5. 5.
    Heinz R (1988) Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer-Verlag, Berlin HeidelbergGoogle Scholar
  6. 6.
    Wei L, Rujing W, Hairong L, Jieting K, Xinhua Z, He H, Xiaobo H, Wei H (2019) Simultaneous measurement of refractive index and temperature for prism-based surface plasmon resonance sensors. Opt Express 27(2):2019Google Scholar
  7. 7.
    Chlebus R, Chylek J, Ciprian D, Hlubina P (2018) Surface plasmon resonance based measurement of the dielectric function of a thin metal film. Sensors 18:3693Google Scholar
  8. 8.
    Breveglieri G, Gallo TE, Travan A, Pellegatti P, Guerra G, Gambari R, Borgatti M (2016) Surface plasmon resonance analysis to detect the β + IVSI-110 thalassemia mutation in circulating cell-free fetal DNA. Clin Chim Acta 462:133–134Google Scholar
  9. 9.
    Breveglieri G, Bassi E, Carlassara S, Cosenza LC, Pellegatti P, Guerra G, Finotti A, Gambari R, Borgatti M (2016) Y-chromosome identification in circulating cell-free fetal DNA using surface plasmon resonance. Prenat Diagn 36:353–361Google Scholar
  10. 10.
    Majka J, Speck C (2007) Analysis of protein-DNA interactions using surface plasmon resonance. Adv Biochem Engin/Biotechnol 104:13–36Google Scholar
  11. 11.
    Rajan J, Anuj KS (2010) Design of a silicon-based plasmonic biosensor chip for human blood-group identification. Sensors Actuators B Chem 145:200–204Google Scholar
  12. 12.
    Jijo L, Vignesh S, Mamatha B, Santhosh C, Rajeev KS (2018) Real-time and rapid detection of Salmonella typhimurium using an inexpensive lab-built surface plasmon resonance setup. Laser Phys Lett 15:075701Google Scholar
  13. 13.
    Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wirtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8:867–871Google Scholar
  14. 14.
    Rob PHK (2008) Physics of surface plasmon resonance. In: Richard BMS, Anna JT (eds) Handbook of surface plasmon resonance. The Royal Society of Chemistry, UK, pp 15–34Google Scholar
  15. 15.
    Stepan AZ, Anton VS, Elena RS, Vladimir MM, Shirshov YM (2002) Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance. Sensors 2:62–70Google Scholar
  16. 16.
    Sarah F, Naseer S, Zul AZJ, Prabakaran P (2017) Surface plasmon resonance sensor sensitivity enhancement using gold-dielectric material. Int J Nanoelectr Mater 10:149–158Google Scholar
  17. 17.
    Lahav A, Atef S, Ibrahim A (2009) Surface plasmon sensor with enhanced sensitivity using top nano dielectric layer. J Nanophotonics 3(1):031501Google Scholar
  18. 18.
    Yufeng Y, Xiantong Y, Qinlinq O, Yonghong S, Jun S, Junle Q, Ken-Tye Y (2018) Highly anisotropic black phosphorus-graphene hybrid architecture for ultrasensitive plasmonic biosensing: theoretical insight. 2D Materials 5:025015Google Scholar
  19. 19.
    Sherif HEG, Munsik C, Young LK, Kyung MB (2016) Dispersion curve engineering of TiO2/silver hybrid substrates for enhanced surface plasmon resonance detection. Sensors 16:1442Google Scholar
  20. 20.
    Molitor F, Guttinger J, Stampfer C, Droscher S, Jacobsen A, Ihn T, Ensslin K (2011) Electronic properties of graphene nanostructures. J Phys Condens Matter 23(24):243201Google Scholar
  21. 21.
    Li D, Wensi Z, Xiaoqing Y, Zhenping W, Zhiqiang S, Gang W (2016) When biomolecules meet graphene: from molecular level interactions to material design and applications. Nanoscale 8(47):19491–19509Google Scholar
  22. 22.
    Leiming W, Chu HS, Koh WS, Li EP (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18(14):14395–14400Google Scholar
  23. 23.
    Leiming W, Jun G, Xiaoyu D, Xiang XJ, Dianyuan F (2017) Sensitivity enhanced by MoS2-graphene hybrid structure in guided-wave surface plasmon resonance biosensor. Plasmonics 13:281–285Google Scholar
  24. 24.
    Jinguang T, Li J, Huifang C, Yiqin W, Ken-Tye Y, Erik F, Sailing H (2018) Graphene-bimetal plasmonic platform for ultra-sensitive biosensing. Opt Commun 410:817–823Google Scholar
  25. 25.
    Szunerits S, Maalouli N, Wijaya E, Vilcot JP, Boukherroub R (2013) Recent advances in the development of graphene-based surface plasmon resonance (SPR) interfaces. Anal Bioanal Chem 405(5):1435–1443Google Scholar
  26. 26.
    Chang Lu YL, Yibin Y, Juewen L (2017) Comparison of MoS2, WS2 and graphene oxide for DNA adsorption and sensing. Langmuir 33(2):630–637Google Scholar
  27. 27.
    Saifur R, Rabiul H, Ritka KA, Shamim A (2018) A novel graphene coated surface plasmon resonance biosensor with tungsten disulfide (WS2) for sensing DNA hybridization. Opt Mater 75:567–573Google Scholar
  28. 28.
    Minghong W, Yanyan H, Shouzhen J, Chao Z, Cheng Y, Tingyin N, Xioyun L, Chonghui L, Wenyuan Z, Baoyuan M (2017) Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetalic film. RSC Adv 7:47177–47182.  https://doi.org/10.1039/C7RA08380G
  29. 29.
    Qinling O, Shuwen Z, Li J, Liying H, Gaixia X, Xuan-Quyen D, Jun Q, Sailing H, Junle Q, Philippe C, Ken-Tye Y (2016) Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructured surface plasmon resonance biosensor. Sci Rep 6:28190Google Scholar
  30. 30.
    Saifur R, Shamim A, Rabiul H, Biplob H, Ismail H (2017) Design and numerical analysis of highly sensitive Au-MoS2–graphene based hybrid surface plasmon resonance biosensor. Opt Commun 396(1):36–43Google Scholar
  31. 31.
    Qingling O, Shuwen Z, Xuan-Quyen D, Philippe C, Ken-Tye Y (2016) Sensitivity enhancement of MoS2 nanosheet based surface plasmon resonance biosensor. Procedia Engineering 140:134–139.  https://doi.org/10.1016/j.proeng.2015.08.1114
  32. 32.
    Saifur R, Shaikh SN, Shamim A, Lway FA, Maksudur R, Ritka KA (2019) Design and numerical analysis of a graphene-coated fiber-optic SPR biosensor using tungsten disulfide. Photonics Nanostruct Fundam Appl 33:29–35Google Scholar
  33. 33.
    Sexton BA, Feltis BN, Davis TJ (2008) Characterisation of gold surface plasmon resonance sensor substrates. Sensors Actuators A 141:471–475Google Scholar
  34. 34.
    Hyuk RG, Seong HL (2010) Spectral and angular responses of surface plasmon resonance based on the Kretschmann prism configuration. Mater Trans 51(6):1150–1155Google Scholar
  35. 35.
    Hsiang-Lin L, Chih-Chiang S, Shen-Han S, Chang-Lung H, Ming-Yang L, Jong L (2014) Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry. Appl Phys Lett 105:20Google Scholar
  36. 36.
    Pradeep KM, Rajan J (2012) Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance. Sensors Actuators B Chem 169:161–166Google Scholar
  37. 37.
    William LB (2006) Surface plasmon-polariton length scales: a route to sub wavelength optics. J Opt A Pure Appl Opt 8:S87–S93Google Scholar
  38. 38.
    Stefan Alexander M (2007) Plasmonics: fundamentals and applications. Springer US, New YorkGoogle Scholar
  39. 39.
    Dionne JA, Sweatlock LA, Atwater HA, Polman A (2005) Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys Rev B 72:075405Google Scholar
  40. 40.
    Hu WQ, Liang EJ, Ding P, Cai GW, Xue QZ (2009) Surface plasmon resonance and field enhancement in #-shaped gold wires metamaterial. Opt Express 17:21843–21849Google Scholar
  41. 41.
    Hai-Pang C, Jing-Lun L, Railing C, Sheng-Yu S, Pui Tak L (2005) High-resolution angular measurement using surface plasmon-resonance via phase interrogation at optimal incident wavelengths. Opt Lett 30:20Google Scholar
  42. 42.
    Petr H, Dalibor C (2017) Spectral phase shift if surface plasmon resonance in the Kretschmann configuration: theory and experiment. Plasmonics 12(4):1071–1078Google Scholar
  43. 43.
    Chie-Ming W, Zhi-Cheng J, Shen-Fen J, Liann-Be C (2003) High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry. Sensors Actuators B 92:133–136Google Scholar
  44. 44.
    Wei G, Shouzhen J, Zhen L, Chonghui L, Jihua X, Jie P, Yanyan H, Baoyuan M, Aihua L, Chao Z (2019) Experimental and theoretical investigation for surface plasmon resonance biosensor based on graphene/Au film/D-POF. Opt Express 27(3):3483–3495Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Institute for Research and Development in Microtechnology (IMT Bucharest)VoluntariRomania
  2. 2.Faculty of PhysicsUniversity of BucharestMagureleRomania

Personalised recommendations