Advertisement

Plasmonics

pp 1–7 | Cite as

Combination of Surface Plasmon Polaritons and Subwavelength Grating for Polarization Beam Splitting

  • Yuan Xie
  • Zhenxing Chen
  • Jun Yan
  • Yiheng Wu
  • Tianye HuangEmail author
  • Zhuo ChengEmail author
Article
  • 16 Downloads

Abstract

A polarization beam splitter (PBS) based on the plasmonic subwavelength grating (PSWG) is proposed and investigated. The PBS is composed by a directional coupler with a PSWG as the coupling region, which offers additional freedom for index tailoring. The mode properties are strongly modified by the unique structure of the PSWG resulting in selective coupling with the two polarization states in the neighbor waveguides. The calculations show that the insertion loss of PBS is less than 1 dB, and the extinction ratios of transverse electric and transverse magnetic polarizations are as high as 27 dB and 30 dB respectively with nearly 4-μm coupling region length. In addition, the fabrication tolerance of the device is investigated in detail.

Keywords

Waveguide Subwavelength structures Polarization beam splitter 

Notes

Funding Information

This work was supported by the National Natural Science Foundation of China under grant 61605179; the Wuhan Science and Technology Bureau under grant 2018010401011297; the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) under grants 162301132703, G1323511794, and CUG2018JM16; and the Experimental Technology Research Funds under grant SJ-201816.

References

  1. 1.
    Xiao J, Guo Z (2018) Ultracompact polarization-insensitive power splitter using subwavelength gratings. IEEE Photon Technol Lett 30:529–532CrossRefGoogle Scholar
  2. 2.
    Saidani N, Belhadj W, AbdelMalek F, Bouchriha H (2012) Detailed investigation of self-imaging in multimode photonic crystal waveguides for applications in power and polarization beam splitters. Opt Commun 285:3487–3492CrossRefGoogle Scholar
  3. 3.
    Xu Y, Xiao J, Sun X (2015) Proposal for compact polarization splitter using asymmetrical three-guide directional coupler. IEEE Photon Technol Lett 27:654–657CrossRefGoogle Scholar
  4. 4.
    Lu Z, Wang Y, Zhang F, Jaeger NAF, Chrostowski L (2015) Wideband silicon photonic polarization beamsplitter based on point-symmetric cascaded broadband couplers. Opt Express 23:29413–29422CrossRefGoogle Scholar
  5. 5.
    Guan X, Wu H, Shi Y, Dai D (2014) Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide. Opt Lett 39:259–262CrossRefGoogle Scholar
  6. 6.
    Guan X, Chen P, Chen S, Xu P, Shi Y, Dai D (2014) Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide. Opt Lett 39:4514–4517CrossRefGoogle Scholar
  7. 7.
    Qiu H, Su Y, Yu P, Hu T, Yang J, Jiang X (2015) Compact polarization splitter based on silicon grating-assisted couplers. Opt Lett 40:885–1887Google Scholar
  8. 8.
    Zhang Y, He Y, Wu J, Jiang X, Liu R, Qiu C, Jiang X, Yang J, Tremblay C, Su Y (2016) High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations. Opt Express 24:6586–6593CrossRefGoogle Scholar
  9. 9.
    Bock PJ, Cheben P, Schmid JH, Lapointe J, Delâge A, Janz S, Hall TJ (2010) subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide. Opt Express 18:20251–20262CrossRefGoogle Scholar
  10. 10.
    Halir R, Bock PJ, Cheben P, Ortega- Moñux A, Alonso-Ramos C, Schmid JH, Lapointe J, Xu D, Wangüemert-Pérez JG, Molina-Fernandez I, Janz S (2015) Waveguide sub-wavelength structures: a review of principles and applications. Laser Photonics Rev 9:25–49CrossRefGoogle Scholar
  11. 11.
    Z. Pan, X. Xu, C. Chung, H. Dalir, H. Yan, K. Chen, Y. Wang, B. Jia, and R. T. Chen (2018) High-speed modulator based on electro-optic polymer infiltrated subwavelength grating waveguide ring resonator Optical Fiber Communication Conference M2I.2Google Scholar
  12. 12.
    Xu Y, Xiao J (2016) An ultracompact polarization-insensitive silicon-based strip-to-slot power splitter. IEEE Photon Technol Lett 28:536–539CrossRefGoogle Scholar
  13. 13.
    Benedikovic D, Cheben P, Schmid JH, Xu D, Lapointe J, Wang S, Halir R, Ortega- Moñux A, Janz S, Dado M (2014) High-efficiency single etch step apodized surface grating coupler using subwavelength structure. Laser Photonics Rev 8:L93–L97CrossRefGoogle Scholar
  14. 14.
    Guo Z, Xiao J (2017) Ultracompact silicon-based polarization beam splitter using subwavelength gratings. IEEE Photon Technol Lett 29:1800–1803CrossRefGoogle Scholar
  15. 15.
    Xu Y, Xiao J (2016) Compact and high extinction ratio polarization beam splitter using subwavelength grating couplers. Opt Lett 41:773–776CrossRefGoogle Scholar
  16. 16.
    Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91CrossRefGoogle Scholar
  17. 17.
    Guan X, Wu H, Shi Y, Wosinski L, Dai D (2013) Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire. Opt Lett 38:3005–3008CrossRefGoogle Scholar
  18. 18.
    Dai D, Bauters J, Bowers JE (2012) Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light Sci Appl 1:500–505CrossRefGoogle Scholar
  19. 19.
    Chee J, Zhu S, Lo GQ (2012) CMOS compatible polarization splitter using hybrid plasmonic waveguide. Opt Express 20:25345–25355CrossRefGoogle Scholar
  20. 20.
    Huang T, Xie Y, Wu Y, Cheng Z, Zeng S, Ping PS (2019) Compact polarization beam splitter assisted by subwavelength grating in triple-waveguide directional coupler. Appl Opt 58:2264–2268CrossRefGoogle Scholar
  21. 21.
    Liu L, Deng Q, Zhou Z (2016) Manipulation of beat length and wavelength dependence of a polarization beam splitter using a subwavelength grating. Opt Lett 41:5126–5129CrossRefGoogle Scholar
  22. 22.
    Sarmiento-Merenguel JD, Ortega- Moñux A, Fédéli JM, Wangüemert-Pérez JG, Alonso-Ramos C, Duran-Valdeiglesias E, Cheben P, Molina-Fernandez I, Halir R (2016) Controlling leakage losses in subwavelength grating silicon metamaterial waveguides. Opt Lett 41:3443–3446CrossRefGoogle Scholar
  23. 23.
    Palik ED (1991) Handbook of Optical Constants of Solids. Academic Press, New YorkGoogle Scholar
  24. 24.
    Chen LR, Wang J, Naghdi B, Glesk I (2019) Subwavelength grating waveguide devices for telecommunications applications. IEEE J Sel Top Quantum Electron 25:1–1Google Scholar
  25. 25.
    Huang Y, Song J, Luo X, Liow TY, Lo GQ (2014) CMOS compatible monolithic multi-layer Si3N4 on SOI platform for low-loss high performance silicon photonics dense integration. Opt Express 22:21859–21865CrossRefGoogle Scholar
  26. 26.
    Donnelly J (1986) Limitations on power-transfer efficiency in three-guide optical couplers. IEEE J Quantum Electron 22:610–616CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechanical Engineering and Electronic InformationChina University of Geosciences (Wuhan)WuhanChina

Personalised recommendations