Advertisement

Plasmonics

pp 1–7 | Cite as

Terahertz Selective Emission Enhancement from a Metasurface-Coupled Photoconductive Emitter in Quasi-Near-Field Zone

  • Zhenyu ZhaoEmail author
  • Xiaobo Zheng
  • Zoltan Ollmann
  • Mozhgan Hayati
  • Wei Peng
  • Thomas Feurer
Article
  • 8 Downloads

Abstract

We present a THz emission enhancement of 41 times at 0.92 THz from a metasurface made of T-shaped resonators excited in a quasi-near-field zone. Such a metasurface has an intrinsic transmission minimum with Q factor of 4 at 1.25 THz under far-field excitation. When this metasurface is coupled onto the backside of a 625-μm-thick photoconductive emitter, the metasurface is below the Fraunhofer distance to the excitation source. As such, one broad enhancement around 0.47 THz and another extremely narrow enhancement at 0.92 THz in the emission spectrum are observed owing to a quasi-near-field excitation. Theoretically, the Q factor of the latter is up to 307, which is limited by the spectral resolution in experiment. The numerical simulations indicate that the T-shaped resonators serve as an array of plasmonic antennas resulting in the aforementioned emission enhancement of THz radiation.

Keywords

Metamaterial Quality factor Terahertz Quasi-near-field 

Notes

Acknowledgments

The authors acknowledge the contribution of Matthias Ulrich and Niklaus Jaussi for sample fabrication.

Funding information

This work is financially supported by the Joint Research Fund in Astronomy (U1631112) under the cooperative agreement between the National Natural Science Foundation of China (NSFC) and Chinese Academy of Sciences (CAS), and the Swiss National Science Foundation (SNSF# 200020_165686). Zhenyu Zhao acknowledges the Swiss National Science Foundation International Short Visit Program (IZK0Z2_173458).

References

  1. 1.
    Tonouchi M (2007) Cutting-edge terahertz technology. Nat Photonics 1:97–105CrossRefGoogle Scholar
  2. 2.
    Park SJ, Hong JT, Choi SJ, Kim HS, Park WK, Han ST, Park YJ, Lee S, Kim DS, Ahn YH (2014) Detection of microorganisms using terahertz metamaterials. Sci Rep 4:4988-1-7Google Scholar
  3. 3.
    Zheludev NI, Kivshar YS (2012) From metamaterials to metadevices. Nat Mater 11:917–924CrossRefGoogle Scholar
  4. 4.
    Bogomazova AN, Vassina EM, Goryachkovskaya TN, Popik VM, Sokolov AS, Kolchanov NA, Lagarkova MA, Kiselev SL, Peltek SE (2015) No DNA damage response and negligible genome-wide transcriptional changes in human embryonic stem cells exposed to terahertz radiation. Sci Rep 5:7749-4-6CrossRefGoogle Scholar
  5. 5.
    Zibik EA, Grange T, Carpenter BA, Porter NE, Ferreira R, Bastard G, Stehr D, Winnerl S, Helm M, Liu HY, Skolnick MS, Wilson LR (2009) Long lifetimes of quantum-dot intersublevel transitions in the terahertz range. Nat Mater 8:803–807CrossRefGoogle Scholar
  6. 6.
    Woltman SJ, Jay GD, Crawford GP (2007) Liquid-crystal materials find a new order in biomedical applications. Nat Mater 6:929–938CrossRefGoogle Scholar
  7. 7.
    Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707–715CrossRefGoogle Scholar
  8. 8.
    Fedotov VA, Rose M, Prosvirnin SL, Papasimakis N, Zheludev NI (2007) Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys Rev Lett 99:147401–1-4CrossRefGoogle Scholar
  9. 9.
    Jansen C, Al-Naib IAI, Born N, Koch M (2011) Terahertz metasurfaces with high Q-factors. Appl Phys Lett 98:051109–1-4CrossRefGoogle Scholar
  10. 10.
    Kawano Y, Ishibashi K (2008) An on-chip near-field terahertz probe and detector. Nat Photonics 2:618–621CrossRefGoogle Scholar
  11. 11.
    Cao W, Singh R, Zhang C, Han J, Tonouchi M, Zhang W (2013) Plasmon-induced transparency in metamaterials: active near field coupling between bright superconducting and dark metallic mode resonators. Appl Phys Lett 103:101106–1-5Google Scholar
  12. 12.
    Hokmabadi MP, Philip E, Rivera E, Kung P, Kim SM (2015) Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators. Sci Rep 5:15735–1-11CrossRefGoogle Scholar
  13. 13.
    Merbold H, Bitzer A, Feurer T (2011) Near-field investigation of induced transparency in similarly oriented double split-ring resonators. Opt Lett 36:1683–1685CrossRefGoogle Scholar
  14. 14.
    Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönnichsen C, Giessen H (2010) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10:1103–1107CrossRefGoogle Scholar
  15. 15.
    Duan X, Chen S, Yang H, Cheng H, Li J, Liu W, Gu C, Tian J (2012) Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials. Appl Phys Lett 101:143105–1-04Google Scholar
  16. 16.
    Li Z, Ma Y, Huang R, Singh R, Gu J, Tian Z, Han J, Zhang W (2011) Manipulating the plasmon-induced transparency in terahertz metamaterials. Opt Express 19:8912–8919CrossRefGoogle Scholar
  17. 17.
    Wan M, Song Y, Zhang L, Zhou F (2015) Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings. Opt Express 23:27361–27368CrossRefGoogle Scholar
  18. 18.
    Chen HT, O’Hara JF, Taylor AJ, Averitt RD, Highstrete C, Lee M, Padilla WJ (2007) Complementary planar terahertz metamaterials. Opt Express 15:1084–1095CrossRefGoogle Scholar
  19. 19.
    Song Z, Zhao Z, Zhao H, Peng W, He X, Shi W (2015) Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators. J Appl Phys 118:043108–1-6Google Scholar
  20. 20.
    Warren S, Gary T (1981) Antenna Theory And Design. WileyGoogle Scholar
  21. 21.
    Singh R, Al-Naib IAI, Yang Y, Chowdhury DR, Cao W, Rockstuhl C, Ozaki T, Morandotti R, Zhang W (2011) Observing metamaterial induced transparency in individual Fano resonators with broken symmetry. Appl Phys Lett 99:201107–1-4Google Scholar
  22. 22.
    Zhang F, Huang XC, Zhao Q, Chen L, Wang Y, Li Q, He X, Li C, Chen K (2014) Fano resonance of an asymmetric dielectric wire pair. Appl Phys Lett 105:172901–1-4Google Scholar
  23. 23.
    Degl’Innocenti R, Jessop DS, Sol CWO, Xiao L, Kindness SJ, Lin H, Zeitler JA, Braeuninger-Weimer P, Hofmann S, Ren Y, Kamboj VS, Griffiths JP, Beere HE, Ritchie DA (2016) Fast modulation of terahertz quantum cascade lasers using graphene loaded plasmonic antennas. ACS Photonics 3:464–470CrossRefGoogle Scholar
  24. 24.
    Giannini V, Fernandez-Domínguez AI, Heck SC, Maier SA (2011) Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem Rev 111:3888–3912CrossRefGoogle Scholar
  25. 25.
    Zhao Z, Zheng X, Peng W, Zhang J, Zhao H, Shi W (2017) Localized terahertz electromagnetically-induced transparency-like phenomenon in a conductively coupled trimer metamolecule. Opt Express 25:24410–24424CrossRefGoogle Scholar
  26. 26.
    Zhao Z, Zheng X, Peng W, Zhao H, Zhang J, Luo Z, Shi W (2017) Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators. Opt Mater Express 7:1950–1961CrossRefGoogle Scholar
  27. 27.
    Neubrech F, Huck C, Weber K, Pucci A, Giessen H (2017) Surface-enhanced infrared spectroscopy using resonant nanoantennas. Chem Rev 117:5110–5145CrossRefGoogle Scholar
  28. 28.
    Coenen T, Vesseur EJR, Polman A (2012) Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas. ACS Nano 6:1742–1750CrossRefGoogle Scholar
  29. 29.
    Flauraud V, Regmi R, Winkler PM, Alexander DTL, Rigneault H, van Hulst NF, García-Parajo MF, Wenger J, Brugger J (2017) In-plane plasmonic antenna arrays with surface nanogaps for giant fluorescence enhancement. Nano Lett 17:1703–1710CrossRefGoogle Scholar
  30. 30.
    Kawata S, Inouye Y, Verma P (2009) Plasmonics for near-field nano-imaging and superlensing. Nat Photonics 3:388–394CrossRefGoogle Scholar
  31. 31.
    Ciracì C, Hill RT, Mock JJ, Urzhumov Y, Fernández-Domínguez AI, Maier SA, Pendry JB, Chilkoti A, Smith DR (2012) Probing the ultimate limits of plasmonic enhancement. Science 337:1072–1074CrossRefGoogle Scholar
  32. 32.
    Malakoutian M, Byambadorj T, Davaji B, Richie J, Lee CH (2017) Optimization of the bowtie gap geometry for a maximum electric field enhancement. Plasmonics 12:287–292CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsShanghai Normal UniversityShanghaiChina
  2. 2.Institute of Applied PhysicsUniversity of BernBernSwitzerland
  3. 3.Shanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghaiChina

Personalised recommendations