pp 1–7 | Cite as

Flexible and Tunable Dielectric Color Meta-hologram

  • Xiaoyi Guo
  • Mingbo Pu
  • Yinghui Guo
  • Xiaoliang Ma
  • Xiong Li
  • Xiangang LuoEmail author


Metasurface holograms consisting of nanostructures have shown great promise for various applications due to their unique capability of shaping light. However, most of previous work about metasurface holograms suffer from either single color or fixed colors once the metasurface holograms are fabricated. In this paper, a tunable dual-color metasurface hologram based on the extension of flexible substrate is proposed and numerically demonstrated. This scheme shows large potential in dynamic color display and information storage.


Hologram Flexible material Color tunable Metasurface 


Funding Information

This study was supported by the National Natural Science Foundation of China (61622508, 61875253, 61705233).


  1. 1.
    Leith EN, Upatnieks J (1962) Reconstructed wavefronts and communication theory*. J Opt Soc Am 52:1123–1130CrossRefGoogle Scholar
  2. 2.
    Gabor D (1972) Holography, 1948-1971. Proc IEEE 60:655–668CrossRefGoogle Scholar
  3. 3.
    Gabor D (1948) A New Microscope Principle. Nature 161:777CrossRefGoogle Scholar
  4. 4.
    Li X, Chen L, Li Y, Zhang X, Pu M, Zhao Z, Ma X, Wang Y, Hong M, Luo X (2016) Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2:e1601102CrossRefGoogle Scholar
  5. 5.
    Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY, Capasso F (2016) Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352:1190–1194CrossRefGoogle Scholar
  6. 6.
    Paniagua-Domínguez R, Yu YF, Khaidarov E, Choi S, Leong V, Bakker RM, Liang X, Fu YH, Valuckas V, Krivitsky LA, Kuznetsov AI (2018) A metalens with a near-unity numerical aperture. Nano Lett 18:2124–2132CrossRefGoogle Scholar
  7. 7.
    Wang S, Wu PC, Su V-C, Lai Y-C, Chen M-K, Kuo HY, Chen BH, Chen YH, Huang T-T, Wang J-H, Lin R-M, Kuan C-H, Li T, Wang Z, Zhu S, Tsai DP (2018) A broadband achromatic metalens in the visible. Nat Nanotechnol 13:227–232CrossRefGoogle Scholar
  8. 8.
    Guo Y, Ma X, Pu M, Li X, Zhao Z, Luo X (2018) High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens. Adv Opt Mater 6:1800592CrossRefGoogle Scholar
  9. 9.
    Guo Y, Pu M, Zhao Z, Wang Y, Jin J, Gao P, Li X, Ma X, Luo X (2016) Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photonics 3:2022–2029CrossRefGoogle Scholar
  10. 10.
    Huang K, Dong Z, Mei S, Zhang L, Liu Y, Liu H, Zhu H, Teng J, Luk'yanchuk B, Yang JKW, Qiu C-W (2016) Silicon multi-meta-holograms for the broadband visible light. Laser Photonics Rev 10:500–509CrossRefGoogle Scholar
  11. 11.
    Lin J, Genevet P, Kats MA, Antoniou N, Capasso F (2013) Nanostructured holograms for broadband manipulation of vector beams. Nano Lett 13:4269–4274CrossRefGoogle Scholar
  12. 12.
    Yue F, Wen D, Xin J, Gerardot BD, Li J, Chen X (2016) Vector vortex beam generation with a single plasmonic metasurface. ACS Photonics 3:1558–1563CrossRefGoogle Scholar
  13. 13.
    Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Gu M, Hong M, Luo X (2015) Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv 1:e1500396CrossRefGoogle Scholar
  14. 14.
    Liang L, Qi M, Yang J, Shen X, Zhai J, Xu W, Jin B, Liu W, Feng Y, Zhang C, Lu H, Chen H-T, Kang L, Xu W, Chen J, Cui TJ, Wu P, Liu S (2015) Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials. Adv Opt Mater 3:1374–1380CrossRefGoogle Scholar
  15. 15.
    Ma X, Pu M, Li X, Guo Y, Luo X (2019) All-metallic wide-angle metasurfaces for multifunctional polarization manipulation. Opto-Electron Adv 2(180023):18002301–18002306CrossRefGoogle Scholar
  16. 16.
    Kang M, Liu F, Li T-F, Guo Q-H, Li J, Chen J (2013) Polarization-independent coherent perfect absorption by a dipole-like metasurface. Opt Lett 38:3086–3088CrossRefGoogle Scholar
  17. 17.
    Kenanakis G, Xomalis A, Selimis A, Vamvakaki M, Farsari M, Kafesaki M, Soukoulis CM, Economou EN (2015) Three-dimensional infrared metamaterial with asymmetric transmission. ACS Photonics 2:287–294CrossRefGoogle Scholar
  18. 18.
    Liu L, Zhang X, Zhao Z, Pu M, Gao P, Luo Y, Jin J, Wang C, Luo X (2017) Batch fabrication of metasurface holograms enabled by plasmonic cavity lithography. Adv Opt Mater 5:1700429CrossRefGoogle Scholar
  19. 19.
    Khorasaninejad M, Ambrosio A, Kanhaiya P, Capasso F (2016) Broadband and chiral binary dielectric meta-holograms. Sci Adv 2:e1501258CrossRefGoogle Scholar
  20. 20.
    Wang Q, Zhang X, Xu Y, Gu J, Li Y, Tian Z, Singh R, Zhang S, Han J, Zhang W (2016) Broadband metasurface holograms: toward complete phase and amplitude engineering. Sci Rep 6:32867CrossRefGoogle Scholar
  21. 21.
    Zhao W, Jiang H, Liu B, Song J, Jiang Y, Tang C, Li J (2016) Dielectric Huygens’ metasurface for high-efficiency hologram operating in transmission mode. Sci Rep 6:30613CrossRefGoogle Scholar
  22. 22.
    Zhao W, Liu B, Jiang H, Song J, Pei Y, Jiang Y (2016) Full-color hologram using spatial multiplexing of dielectric metasurface. Opt Lett 41:147–150CrossRefGoogle Scholar
  23. 23.
    Wen D, Yue F, Li G, Zheng G, Chan K, Chen S, Chen M, Li KF, Wong PWH, Cheah KW, Yue Bun E, Pun SZ, Chen X (2015) Helicity multiplexed broadband metasurface holograms. Nat Commun 6(8241):8241CrossRefGoogle Scholar
  24. 24.
    Chen WT, Yang K-Y, Wang C-M, Huang Y-W, Sun G, Chiang ID, Liao CY, Hsu W-L, Lin HT, Sun S, Zhou L, Liu AQ, Tsai DP (2014) High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett 14:225–230CrossRefGoogle Scholar
  25. 25.
    Zheng G, Mühlenbernd H, Kenney M, Li G, Zhang S (2015) Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 10:308–312CrossRefGoogle Scholar
  26. 26.
    Zhang X, Jin J, Wang Y, Pu M, Li X, Zhao Z, Gao P, Wang C, Luo X (2016) Metasurface-based broadband hologram with high tolerance to fabrication errors. Sci Rep 6:19856CrossRefGoogle Scholar
  27. 27.
    Huang L, Chen X, Mühlenbernd H, Zhang H, Chen S, Bai B, Tan Q, Jin G, Cheah K-W, Qiu C-W, Li J, Zentgraf T, Zhang S (2013) Three-dimensional optical holography using a plasmonic metasurface. Nat Commun 4:2808CrossRefGoogle Scholar
  28. 28.
    Zhang X, Jin J, Pu M, Li X, Ma X, Gao P, Zhao Z, Wang Y, Wang C, Luo X (2017) Ultrahigh-capacity dynamic holographic displays via anisotropic nanoholes. Nanoscale 9:1409–1415CrossRefGoogle Scholar
  29. 29.
    Huang Y-W, Chen WT, Tsai W-Y, Wu PC, Wang C-M, Sun G, Tsai DP (2015) Aluminum plasmonic multicolor meta-hologram. Nano Lett 15:3122–3127CrossRefGoogle Scholar
  30. 30.
    Qin FF, Liu ZZ, Zhang Z, Zhang Q, Xiao JJ (2018) Broadband full-color multichannel hologram with geometric metasurface. Opt Express 26:11577–11586CrossRefGoogle Scholar
  31. 31.
    Martins A, Li J, da Mota AF, Wang Y, Neto LG, do Carmo JP, Teixeira FL, Martins ER, Borges B-HV (2018) Highly efficient holograms based on c-Si metasurfaces in the visible range. Opt Express 26:9573–9583CrossRefGoogle Scholar
  32. 32.
    Burch J, Di Falco A (2018) Surface topology specific metasurface holograms. ACS Photonics 5:1762–1766CrossRefGoogle Scholar
  33. 33.
    Luo X (2015) Principles of electromagnetic waves in metasurfaces. Sci China Phys Mech Astron 58:594201CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and ElectronicsChinese Academy of SciencesChengduChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations