pp 1–9 | Cite as

Three-Dimensional Aberration Analyses of Metasurface Flat Lenses

  • Ruifeng Li
  • Han Liu
  • Yongqi FuEmail author


Three-dimensional analyses of optical aberrations of metasurface flat lenses are presented via ray tracing. The ray tracing is performed on the basis of anomalous refraction/reflection law specialized for metasurface instead of conventional Snell law. Relationship between spherical aberration and working distance, feature of chromatic aberration, astigmatism in meridian, and sagittal directions are analyzed numerically to fully reveal the aberration characteristics. Through the curve descriptions of geometric point spread function (PSF) and the modulation transfer function (MTF), the influence of monochrome aberration on the metasurface flat lenses is fully demonstrated. The results of the design model are instructive for the application of the metasurface flat lense–based high quality optical systems theoretically.


Metasurface flat lenses Three-dimensional aberration analyses Point light source 



The authors would like to thank Prof. Ping Jiang for her help in aberration theory and Metalab coding.

Funding Information

This work is supported by National Scientific Foundation of China with approved number of U1532133.


  1. 1.
    Ra’di Y, Simovski CR, Tretyakov SA (2015) Thin perfect absorbers for electromagnetic waves: theory, design, and realizations. Phy Rev Appl 3:037001CrossRefGoogle Scholar
  2. 2.
    Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312:1780–1782CrossRefGoogle Scholar
  3. 3.
    Yu N, Genevet P, Kats MA, Aieta F, Tetienne J-P, Capasso F, Gaburro Z (2011) Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334:333–337CrossRefGoogle Scholar
  4. 4.
    Aieta F, Genevet P, Kats MA, Yu N, Blanchard R, Gaburro Z, Capasso F (2012) Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett 12(9):4932–4936CrossRefGoogle Scholar
  5. 5.
    Arbabi A, Arbabi E, Kamali SM, Horie Y, Han S, Faraon A (2016) Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat Commun 7:13682CrossRefGoogle Scholar
  6. 6.
    Groever B, Chen WT, Capasso F (2017) Meta-lens doublet in the visible region. Nano Lett 17:4902–4907CrossRefGoogle Scholar
  7. 7.
    Arbabi E, Arbabi A, Kamali SM, Horie Y, Faraon A (2016) Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with metamolecules. Optica 3:628–633CrossRefGoogle Scholar
  8. 8.
    Chen WT, Zhu AY, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, Capasso F (2018) A broadband achromatic metasurface flat lenses for focusing and imaging in the visible. Nat Nanotechnol 13:220–226CrossRefGoogle Scholar
  9. 9.
    Wang S, Wu PC, Su VC, Lai YC, Hung Chu C, Chen JW, Lu SH, Chen J, Xu B, Kuan CH, Li T, Zhu S, Tsai DP (2017) Broadband achromatic optical metasurface devices. Nat Commun 8:187CrossRefGoogle Scholar
  10. 10.
    Li Y, Li X, Pu M, Zhao Z, Ma X, Wang Y, Luo X (2016) Achromatic flat optical components via compensation between structure and material dispersions. Sci Rep 6:19885CrossRefGoogle Scholar
  11. 11.
    Shrestha S, Overvig AC, Lu M, Stein A, Yu N (2018) Broadband achromatic dielectric metasurface flat lenses. Light: Science & Applications 7:85CrossRefGoogle Scholar
  12. 12.
    Aieta F, Genevet P, Kats M, Capasso F (2013) Aberrations of flat lenses and aplanatic metasurfaces. Opt Express 10:1364Google Scholar
  13. 13.
    Fahrbach FO, Rohrbach A (2010) A line scanned light-sheet microscope with phase shaped self-reconstructing beams. Opt Express 18:24229–24244CrossRefGoogle Scholar
  14. 14.
    She A, Zhang S, Shian S, Clarke DR, Capasso F (2018) Adaptive metasurface flat lenseses with simultaneous electrical control of focal length, astigmatism, and shift. Sci Adv 4:9957CrossRefGoogle Scholar
  15. 15.
    Yu N, Capasso F (2014) Flat optics with designer metasurfaces. Nat Mater 10:1038Google Scholar
  16. 16.
    Arbabi E, Arbabi A, Kamali SM, Horie Y, Faraji-Dana MS, Faraon A (2018) MEMS-tunable dielectric metasurface lens. Nat Commun 9:812CrossRefGoogle Scholar
  17. 17.
    Ee H-S, Agarwal R (2016) Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett 16:2818–2823CrossRefGoogle Scholar
  18. 18.
    Sherrott MC, Hon PWC, Fountaine KT, Garcia JC, Ponti SM, Brar VW, Sweatlock LA, Atwater HA (2017) Experimental demonstration of >230° phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces. Nano Lett 17:3027–3034CrossRefGoogle Scholar
  19. 19.
    Jonathan Nylk KM et al (2018) Light-sheet microscopy with attenuation-compensated propagation-invariant beams. Sci Adv 4:4817CrossRefGoogle Scholar
  20. 20.
    Goodman JW (2005) Introduction to Fourier optics, 3rd edn. Roberts & Company, EnglewoodGoogle Scholar
  21. 21.
    Olarte OE, Andilla J, Gualda EJ, Loza-alvarez P (2017) Light-sheet microscopy: a tutorial. Adv Opt Photon 10:111–179.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of PhysicsUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations