Advertisement

Plasmonics

pp 1–8 | Cite as

Au Plasmonic Shofar Structures

  • Desapogu Rajesh Email author
  • Shmuel Sternklar
  • Dima Cheskis
  • Yuri Gorodetski
Article
  • 109 Downloads

Abstract

We demonstrate a simple two-step etching method to fabricate Au plasmonic shofars (“shofar” is the Hebrew name for certain types of curved and tapered horns, such as from a ram). The structural, optical, and morphological properties were studied by using X-ray diffraction, UV-Vis spectrophotometry, and scanning electron microscopy (SEM). The etching mechanism and the light-guiding properties for this unique morphology are described. The leaky surface plasmon propagation (SPP) and guiding properties of shofars are investigated by using leakage radiation microscopy (LRM).

Keywords

Plasmonics Shofar Leakage radiation microscopy Au plasmonic shofars 

Notes

Acknowledgments

We acknowledge the Ministry of Science, Technology and Space of Israel for financial support.

References

  1. 1.
    Cobley CM, Chen J, Cho EC, Wang LV, Xia Y (2011) Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem Soc Rev 40(1):44–56CrossRefPubMedGoogle Scholar
  2. 2.
    Sau TK, Rogach A (2010) Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv Mater 22(16):1781–1804CrossRefPubMedGoogle Scholar
  3. 3.
    Peng Z, Yang H (2009) Designer platinum nanoparticles: control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 4(2):143–164CrossRefGoogle Scholar
  4. 4.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  5. 5.
    Pan ZW, Dai ZR, Wang ZL (2011) Nanobelts of semiconducting oxides. Science 291(5510):1947–1949CrossRefGoogle Scholar
  6. 6.
    Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102CrossRefPubMedGoogle Scholar
  7. 7.
    Yin J, Wu T, Song J, Zhang Q, Liu S, Xu R, Duan H (2011) SERS-active nanoparticles for sensitive and selective detection of cadmium ion (Cd2+). Chem Mater 23(21):4756–4764CrossRefGoogle Scholar
  8. 8.
    Wang DH, Kim DY, Choi KW, Seo JH, Im SH, Park JH, Park OO, Heeger AJ (2011) Enhancement of donor-acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles. Angew Chem Int Ed Eng 50(24):5519–5523CrossRefGoogle Scholar
  9. 9.
    Maier SA, Kik PG, Atwater HA, Meltzer SM, Harel E, Koel BE, Requicha AAG (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2(4):229–232CrossRefPubMedGoogle Scholar
  10. 10.
    Pile DFP, Gramotnev DK (2004) Channel plasmon–polariton in a triangular groove on a metal surface. Opt Lett 29(10):1069–1079CrossRefPubMedGoogle Scholar
  11. 11.
    Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440(7083):508–511CrossRefGoogle Scholar
  12. 12.
    Cai WS, Shin W, Fan SH, Brongersma ML (2010) Elements for plasmonic nanocircuits with three-dimensional slot waveguides. Adv Mater 22:5120–5124CrossRefPubMedGoogle Scholar
  13. 13.
    Wei H, Xu H (2012) Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits. Nanophotonics 1(2):155–169CrossRefGoogle Scholar
  14. 14.
    Guo X, Ma YG, Wang Y, Tong LM (2013) Nanowire plasmonic waveguides, circuits and devices. Laser Photonics Rev 7(6):855–881CrossRefGoogle Scholar
  15. 15.
    Xiong X, Zou CL, Ren XF, Liu AP, Ye YX, Sun FW, Guo CG (2013) Silver nanowires for photonics applications. Laser Photonics Rev 7(6):901–919CrossRefGoogle Scholar
  16. 16.
    Takahara J, Yamagishi S, Taki H, Morimoto A, Kobayashi T (1997) Guiding of a one-dimensional optical beam with nanometer diameter. Opt Lett 22(7):475–477CrossRefPubMedGoogle Scholar
  17. 17.
    Novotny L, Hafner C (1994) Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function. Phys Rev E 50(5):4094–4106CrossRefGoogle Scholar
  18. 18.
    Weeber JC, Krenn JR, Dereux A, Lamprecht B, Lacroute Y, Goudonnet JP (2001) Near-field observation of surface plasmon polariton propagation on thin metal stripes. Phys Rev B 64(4):045411–045419CrossRefGoogle Scholar
  19. 19.
    Zia R, Schuller JA, Brongersma ML (2006) Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides. Phys Rev B 74(16):165415–165426CrossRefGoogle Scholar
  20. 20.
    Wang W, Yang Q, Fan F, Xu, Lin Wang Z (2011) Light propagation in curved silver nanowire plasmonic waveguides. Nano Lett 11(4):1603–1608CrossRefPubMedGoogle Scholar
  21. 21.
    Chikkaraddy R, Patra PP, Tripathi RPN, Dasgupta A, Pavan Kumar GV (2016) Plasmon-controlled excitonic emission from vertically-tapered organic nanowires. Nanoscale 8(31):14803–14808CrossRefPubMedGoogle Scholar
  22. 22.
    Garoli D, Zilio P, Gorodetski Y, Tantussi F, De Angelis F (2016) Beaming of helical light from plasmonic vortices via adiabatically tapered nanotip. Nano Lett 16(10):6636–6643CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Garoli D, Zilio P, De Angelis F, Gorodetski Y (2017) Helicity locking of chiral light emitted from a plasmonic nanotaper. Nanoscale 9(21):6965–6969CrossRefPubMedGoogle Scholar
  24. 24.
    Stakhov A, Rozin B (2005) The golden shofar. Chaos, Solitons Fractals 26(3):677–684CrossRefGoogle Scholar
  25. 25.
    Laurent G, Field N, Aubard J, Levi G (2005) Evidence of multipolar excitations in surface enhanced Raman scattering. Phys Rev B 71(4):045430–004536CrossRefGoogle Scholar
  26. 26.
    Hu M, Novo C, Funston A, Wang H, Staleva H, Zou S, Mulvaney P, Xia Y, Hartland GV (2008) Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance. J Mater Chem 18(17):1949–1960CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Xia Y, Yujie X, ByungKwon L, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics. Angew Chem Int Ed Eng 48(1):60–103CrossRefGoogle Scholar
  28. 28.
    Pan D, Wei H, Xu HX (2013) Metallic nanowires for subwavelength waveguiding and nanophotonic devices. Chin Phys B 22(9):097305–097312CrossRefGoogle Scholar
  29. 29.
    Wei H, Pan D, Xu HX (2015) Routing of surface plasmons in silver nanowire networks controlled by polarization and coating. Nanoscale 7(45):19053–19059CrossRefPubMedGoogle Scholar
  30. 30.
    Li Q, Qiu M (2013) Plasmonic wave propagation in silver nanowires: guiding modes or not? Opt Express 21(7):8587–8595CrossRefPubMedGoogle Scholar
  31. 31.
    Dipak R, Vijaya R (2017) Role of stopband and localized surface plasmon resonance in Raman scattering from metallo-dielectric photonic crystals. Plasmonics 12:1409–1416CrossRefGoogle Scholar
  32. 32.
    Anatoliy ID, Eric SB, Jose RCF, Robert JS, James M, Mark AS, Chris DG (2012) Distance dependence of metal-enhanced fluorescence. Plasmonics 7:739–744CrossRefGoogle Scholar
  33. 33.
    Kadir A, Chris DG (2009) Wavelength-ratiometric plasmon light scattering-based immunoassays. Plasmonics 4:267–272CrossRefGoogle Scholar
  34. 34.
    Hilla BH, Jan K, Buddha M, Ariel K, Robert M, Chris DG (2015) Metal-enhanced fluorescence from zinc substrates can lead to spectral distortion and a wavelength dependence. Appl Phys Lett 106:081605–081608CrossRefGoogle Scholar
  35. 35.
    Karina G, Amit E, Ronald M, Ariel K, Chris DG, Robert SM (2014) Increased bioassay sensitivity of bioactive molecule discovery using metal-enhanced bioluminescence. J Nanopart Res 16:2770–2783CrossRefGoogle Scholar
  36. 36.
    Chris DG, Joseph RL (2002) Metal-enhanced fluorescence. J Fluoresc 12:121–129CrossRefGoogle Scholar
  37. 37.
    Huanhuan Z, Shuo Y, Qiang Z, Longkun Y, Peijie W, Yan F (2017) The suitable condition of using LSPR model in SERS: LSPR effect versus chemical effect on microparticles surface-modified with nanostructures. Plasmonics 12:77–81CrossRefGoogle Scholar
  38. 38.
    Jun D, Jingang W, Fengcai M, Yuan C, Han Z, Zhenglong Z (2015) Recent progresses in integrated nanoplasmonic devices based on propagating surface plasmon polaritons. Plasmonics 10:1841–1852CrossRefGoogle Scholar
  39. 39.
    Bozhevolnyi SI, Volkov VS, Devaux E, Ebbesen TW (2005) Channel plasmon-polariton guiding by subwavelength metal grooves. Phys Rev Lett 95(4):046802–046805CrossRefPubMedGoogle Scholar
  40. 40.
    Boltasseva A, Volkov VS, Nielsen RB, Moreno E, Rodrigo SG, Bozhevolnyi SI (2008) Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths. Opt Express 16(8):5252–5260CrossRefPubMedGoogle Scholar
  41. 41.
    Drezet A, Hohenau A, Koller D, Stepanov A, Ditlbacher H, Steinberger B, Aussenegg FR, Leitner A, Krenn JR (2008) Leakage radiation microscopy of surface plasmon polaritons. Mater Sci Eng B 149(3):220–229CrossRefGoogle Scholar
  42. 42.
    Chikkaraddy R, Singh D, Pavan Kumar GV (2012) Plasmon assisted light propagation and Raman scattering hot-spot in end-to-end coupled silver nanowire pairs. Appl Phys Lett 100(4):043108–043110CrossRefGoogle Scholar
  43. 43.
    Rajesh D, Nechayev CD, Sternklar S, Gorodetski Y (2018) Probing spin-orbit interaction via Fano interference. Appl Phys Lett 113(26):261104–261108CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronic EngineeringAriel UniversityArielIsrael
  2. 2.Department of Mechanical Engineering and MechatronicsAriel UniversityArielIsrael
  3. 3.Department of PhysicsAriel UniversityArielIsrael

Personalised recommendations