Advertisement

Plasmonics

, Volume 14, Issue 6, pp 1949–1954 | Cite as

A Compact Graphene Modulator Based on Localized Surface Plasmon Resonance with a Chain of Metal Disks

  • Jinyu Luan
  • Pengfei Zheng
  • Huimin Yang
  • Guohua Hu
  • Ruohu Zhang
  • Binfeng YunEmail author
  • Yiping CuiEmail author
Article
  • 62 Downloads

Abstract

Most graphene electro-optic modulators based on the electro-refractive modulation are composed of Mach-Zehnder interferometer or microring resonator structures and have a relative compact size comparing with dielectric ones. To further shrink the footprint, we use the localized surface plasmon resonance of a chain of three metal disks to realize a submicron graphene modulator, whose length can be reduced to less than 1 μm. The proposed graphene modulator has an extinction ratio of 5.5 dB with a length of only 740 nm. And the insertion loss, 3-dB bandwidth, and power consumption of the modulator are 1.9 dB, 83.4 GHz, and 8.55 fJ/bit respectively.

Keywords

Graphene Localized surface plasmon Modulator 

Notes

Funding

This work was supported by the National Science Foundation of Jiangsu Province Grant (BK 20161429) and the National Natural Science Foundation of China under Grant (61601118).

References

  1. 1.
    Novoselov KS, Geim AK et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRefGoogle Scholar
  2. 2.
    Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308–1308CrossRefGoogle Scholar
  3. 3.
    Mak KF, Sfeir MY, Wu Y, Lui CH, Misewich JA, Heinz TF (2008) Measurement of the optical conductivity of graphene. Phys Rev Lett 101(19):196405CrossRefGoogle Scholar
  4. 4.
    Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X (2011) A graphene-based broadband optical modulator. Nature 474(7349):64–67CrossRefGoogle Scholar
  5. 5.
    Liu M, Yin X, Zhang X (2012) Double-layer graphene optical modulator. Nano Lett 12(3):1482–1485CrossRefGoogle Scholar
  6. 6.
    Kovacevic G, Yamashita S (2016) Design optimizations for a high-speed two-layer graphene optical modulator on silicon. Ieice Electron Exp 13:14), 1–14),11CrossRefGoogle Scholar
  7. 7.
    Phare CT, Lee YHD, Cardenas J, Lipson M (2015) Graphene electro-optic modulator with 30 ghz bandwidth. Nat Photonics 9(8):511–515CrossRefGoogle Scholar
  8. 8.
    Ye S, Wang Z, Tang L, Zhang Y, Lu R, Liu Y (2014) Electro-absorption optical modulator using dual-graphene-on-graphene configuration. Opt Express 22(21):26173–26180CrossRefGoogle Scholar
  9. 9.
    Ma Z, Tahersima MH, Khan S et al (2016) Two-dimensional material-based mode confinement engineering in electro-optic modulators. IEEE J Sel Top Quantum Electron 23(1):3400208Google Scholar
  10. 10.
    Ding Y, Guan X, Zhu X, Hu H, Bozhevolnyi SI, Oxenløwe LK, Jin KJ, Mortensen NA, Xiao S (2017) Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides. Nanoscale 9(40):15576–15581CrossRefGoogle Scholar
  11. 11.
    Du W, Li EP et al (2014) Tunability analysis of a graphene-embedded ring modulator. IEEE Photon Technol Lett 26(20):2008–2011CrossRefGoogle Scholar
  12. 12.
    Shu H, Su Z, Huang L, Wu Z, Wang X, Zhang Z, Zhou Z (2018) Significantly high modulation efficiency of compact graphene modulator based on silicon waveguide. Sci Rep 8(1):991CrossRefGoogle Scholar
  13. 13.
    Klar T, Perner M, Grosse S, Plessen V et al (1998) Surface-plasmon resonances in single metallic nanoparticles. Phys Rev Lett 80(19):4249–4252CrossRefGoogle Scholar
  14. 14.
    Brongersma ML, Hartman JW, Atwater HA et al (1999) Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. MRS Proc 582(24):16356–16359Google Scholar
  15. 15.
    Maier SA, Kik PG, Atwater HA (2003) Optical pulse propagation in metal nanoparticle chain waveguides. Phys Rev B 67(20):205402CrossRefGoogle Scholar
  16. 16.
    Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9):351–355CrossRefGoogle Scholar
  17. 17.
    Du X, Skachko I, Barker A, Andrei EY (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3(8):491–495CrossRefGoogle Scholar
  18. 18.
    Lee CC, Suzuki S, Xie W, Schibli TR (2012) Broadband graphene electro-optic modulators with sub-wavelength thickness. Opt Express 20(5):5264CrossRefGoogle Scholar
  19. 19.
    Fan M, Yang H, Zheng P, Hu G, Yun B, Cui Y (2017) Multilayer graphene electro-absorption optical modulator based on double-stripe silicon nitride waveguide. Opt Express 25(18):21619–21629CrossRefGoogle Scholar
  20. 20.
    Kwon MS (2017) Discussion of the epsilon-near-zero effect of graphene in a horizontal slot waveguide. IEEE Photonics J 6(3):1–9CrossRefGoogle Scholar
  21. 21.
    Johnson, et al. (1972) Optical constants of the noble metals. Phys Rev B (Solid State) 6(12):4370–4379CrossRefGoogle Scholar
  22. 22.
    Stognii N, Sakhnenko N, (2012) Theoretical study of symmetric and antysymmetric plasmons in chains of coupled plasma cylinders, European Conference on Antennas & Propagation IEEEGoogle Scholar
  23. 23.
    Guan X, Hao WU, Dai D (2014) Silicon hybrid nanoplasmonics for ultra-dense photonic integration. Front Optoelectron 7(3):300–319CrossRefGoogle Scholar
  24. 24.
    Shiramin LA, Thourhout DV (2017) Graphene modulators and switches integrated on silicon and silicon nitride waveguide. IEEE J Sel Top Quantum Electron 23(1):3600107Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Advanced Photonics CenterSoutheast UniversityNanjingChina

Personalised recommendations