Advertisement

Plasmonics

pp 1–7 | Cite as

High-Q Localized Phonon Polaritons in Thin hBN Discs with Omnidirectional Strong Light Absorptions

  • Y. ZhouEmail author
  • J. J. Wang
Article
  • 83 Downloads

Abstract

Based on numerical calculations, we have found that thin hexagonal boron nitride nanodiscs support high-quality localized phonon polariton modes in the upper Reststrahlen band. Near the resonances, single disc can be phenomenologically considered as an electric dipole. By arranging discs into a square lattice, strong light absorptions can be achieved. Modeling such periodic systems as dipole lattices, simple reflecting substrates can be designed which lead to omnidirectional strong, even nearly perfect, light absorptions. Under the condition of nearly total absorption, the electric fields at the hexagonal boron nitride surfaces are largely enhanced due to low-loss localized phonon polaritons. Our investigations might be useful for phonon polariton–based nanophotonic devices, such as sensors.

Keywords

Phonon polaritons Light absorptions Boron nitride Omnidirectional 

Notes

Acknowledgments

We thank Dr. C. Q. Shao for the use of their computer cluster.

Funding

This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ17A040003. And also, National Natural Science Foundation of China (Grant No. 61805062).

References

  1. 1.
    Basov DN, Fogler MM, García de Abajo FJ (2016) Polaritons in van der Waals materials. Science 354(6309):aag1992.  https://doi.org/10.1126/science.aag1992 CrossRefGoogle Scholar
  2. 2.
    Low T, Chaves A, Caldwell JD, Kumar A, Fang NX, Avouris P, Heinz TF, Guinea F, Martin Moreno L, Koppens F (2017) Polaritons in layered two-dimensional materials. Nat Mater 16(2):182–194.  https://doi.org/10.1038/nmat4792 CrossRefGoogle Scholar
  3. 3.
    Xu XG, Ghamsari BG, Jiang JH, Gilburd L, Andreev GO, Zhi C, Bando Y, Golberg D, Berini P, Walker GC (2014) One-dimensional surface phonon polaritons in boron nitride nanotubes. Nat Commun 5(4782).  https://doi.org/10.1038/ncomms5782
  4. 4.
    Caldwell JD, Kretinin AV, Chen Y, Giannini V, Fogler MM, Francescato Y, Ellis CT, Tischler JG, Woods CR, Giles AJ, Hong M, Watanabe K, Taniguchi T, Maier SA, Novoselov KS (2014) Subdiffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat Commun 5(5221).  https://doi.org/10.1038/ncomms6221
  5. 5.
    Dai S, Ma Q, Andersen T, Mcleod AS, Fei Z, Liu MK, Wagner M, Watanabe K, Taniguchi T, Thiemens M, Keilmann F, Jarillo-Herrero P, Fogler MM, Basov DN (2015) Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat Commun 6:6963.  https://doi.org/10.1038/ncomms7963 CrossRefGoogle Scholar
  6. 6.
    Shi Z, Bechtel HA, Berweger S, Sun Y, Zeng B, Jin C, Chang H, Martin MC, Raschke MB, Wang F (2015) Amplitude- and phase-resolved nanospectral imaging of phonon polaritons in hexagonal boron nitride. ACS Photonics 2(7):790–796.  https://doi.org/10.1021/acsphotonics.5b00007 CrossRefGoogle Scholar
  7. 7.
    Gilburd L, Xu XG, Bando Y, Golberg D, Walker GC (2016) Near-field infrared pump–probe imaging of surface phonon coupling in boron nitride nanotubes. J Phys Chem Lett 7(2):289–294.  https://doi.org/10.1021/acs.jpclett.5b02438 CrossRefGoogle Scholar
  8. 8.
    Zhu B, Ren G, Wu B, Gao Y, Li H, Jian S (2016) Nanofocusing of hybrid plasmons-phonons-polaritons in a graphene-hexagonal boron nitride heterostructure. Opt Lett 41(19):4578–4581.  https://doi.org/10.1364/OL.41.004578 CrossRefGoogle Scholar
  9. 9.
    Nikitin AY, Yoxall E, Schnell M, Vélez S, Dolado I, Alonso-Gonzalez P, Casanova F, Hueso LE, Hillenbrand R (2016) Nanofocusing of hyperbolic phonon polaritons in a tapered boron nitride slab. ACS Photonics 3(6):924–929.  https://doi.org/10.1021/acsphotonics.6b00186 CrossRefGoogle Scholar
  10. 10.
    Li P, Dolado I, Alfaro-Mozaz FJ, Nikitin AY, Casanova F, Hueso LE, Vélez S, Hillenbrand R (2017) Optical nanoimaging of hyperbolic surface polaritons at the edges of van der Waals materials. Nano Lett 17(1):228–235.  https://doi.org/10.1021/acs.nanolett.6b03920 CrossRefGoogle Scholar
  11. 11.
    Govyadinov AA, Konečná A, Chuvilin A, Vélez S, Dolado I, Nikitin AY, Lopatin S, Casanova F, Hueso LE, Aizpurua J, Hillenbrand R (2017) Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope. Nat Commum 8:95.  https://doi.org/10.1038/s41467-017-00056-y CrossRefGoogle Scholar
  12. 12.
    Alfaro-Mozaz FJ, Alonso-González P, Vélez S, Dolado I, Autore M, Mastel S, Casanova F, Hueso LE, Li P, Nikitin AY, Hillenbrand R (2017) Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas. Nat Commum 8:15624.  https://doi.org/10.1038/ncomms15624 CrossRefGoogle Scholar
  13. 13.
    Ambrosio A, Tamagnone M, Chaudhary K, Jauregui LA, Kim P, Wilson WL, Capasso F (2018) Selective excitation and imaging of ultraslow phonon polaritons in thin hexagonal boron nitride crystals. Light: Sci Appl 7(27).  https://doi.org/10.1038/s41377-018-0039-4
  14. 14.
    Dai S, Quan J, Hu G, Qiu CW, Tao TH, Li X, Alù A (2019) Hyperbolic phonon polaritons in suspended hexagonal boron nitride. Nano Lett 19(2):1009–1014.  https://doi.org/10.1021/acs.nanolett.8b04242 CrossRefGoogle Scholar
  15. 15.
    Alfaro-Mozaz FJ, Rodrigo SG, Alonso-González P, Vélez S, Dolado I, Casanova F, Hueso LE, Martín-Moreno L, Hillenbrand R, Nikitin AY (2019) Deeply subwavelength phonon-polaritonic crystal made of a van der Waals material. Nat Commun 10:42.  https://doi.org/10.1038/s41467-018-07795-6 CrossRefGoogle Scholar
  16. 16.
    Xu XG, Jiang JH, Gilburd L, Rensing RG, Burch KS, Zhi C, Bando Y, Golberg D, Walker GC (2014) Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene. ACS Nano 8(11):11305–11312.  https://doi.org/10.1021/nn504093g CrossRefGoogle Scholar
  17. 17.
    Dai S, Fei Z, Ma Q, Rodin AS, Wagner M, McLeod AS, Liu MK, Gannett W, Regan W, Watanabe K, Taniguchi T, Thiemens M, Dominguez G, Neto AHC, Zettl A, Keilmann F, Jarillo-Herrero P, Fogler MM, Basov DN (2014) Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride. Science 343(6175):1125–1129.  https://doi.org/10.1126/science.1246833 CrossRefGoogle Scholar
  18. 18.
    Woessner A, Lundeberg MB, Gao Y, Principi A, Alonso-González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens FHL (2015) Highly confined low-loss plasmons in graphene-boron nitride heterostructures. Nat Mater 14(4):421–425.  https://doi.org/10.1038/nmat4169 CrossRefGoogle Scholar
  19. 19.
    Dai S, Ma Q, Liu MK, Andersen T, Fei Z, Goldflam MD, Wagner M, Watanabe K, Taniguchi T, Thiemens M, Keilmann F, Janssen GCAM, Zhu SE, Jarillo-Herrero P, Fogler MM, Basov DN (2015) Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat Nanotechnol 10(8):682–686.  https://doi.org/10.1038/nnano.2015.131 CrossRefGoogle Scholar
  20. 20.
    Hajian H, Ghobadi A, Dereshgi SA, Butun B, Ozbay E (2017) Hybrid plasmon-phonon polariton bands in graphene-hexagonal boron nitride metamaterials. J Opt Soc Am B 34(7):D29–D35.  https://doi.org/10.1364/JOSAB.34.000D29 CrossRefGoogle Scholar
  21. 21.
    Ye S, Wang Z, Sun C, Dong C, Wei B, Wu B, Jian S (2018) Plasmon-phonon-polariton modes and field enhancement in graphene-coated hexagon boron nitride nanowire pairs. Opt Express 26(18):23854–23867.  https://doi.org/10.1364/OE.26.023854 CrossRefGoogle Scholar
  22. 22.
    Kumar A, Low T, Fung KH, Avouris P, Fang NX (2015) Tunable light-matter interaction and the role of hyperbolicity in graphene-hBN system. Nano Lett 15(5):3172–3180.  https://doi.org/10.1021/acs.nanolett.5b01191 CrossRefGoogle Scholar
  23. 23.
    Baranov DG, Edgar JH, Hoffman T, Bassim N, Caldwell JD (2015) Perfect interferenceless absorption at infrared frequencies by a van der Waals crystal. Phys Rev B 92(20):201405.  https://doi.org/10.1103/PhysRevB.92.201405 CrossRefGoogle Scholar
  24. 24.
    Chang YC, Kildishev AV, Narimanov EE, Norris TB (2016) Metasurface perfect absorber based on guided resonance of a photonic hypercrystal. Phys Rev B 94(15):155430.  https://doi.org/10.1103/PhysRevB.94.155430 CrossRefGoogle Scholar
  25. 25.
    Wu J, Jiang L, Guo J, Dai X, Xiang Y, Wen S (2016) Turnable perfect absorption at infrared frequencies by a graphene-hBN hyper crystal. Opt Express 24(15):17103–17114.  https://doi.org/10.1364/OE.24.017103 CrossRefGoogle Scholar
  26. 26.
    Zhao B, Zhang ZM (2017) Perfect mid-infrared absorption by hybrid phonon-plasmon polaritons in hBN/metal grating anisotropic structures. Int J Heat Mass Transf 106:1025–1034.  https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.074 CrossRefGoogle Scholar
  27. 27.
    Shi K, Bao F, He S (2017) Enhanced near-field thermal radiation based on multilayer graphene-hBN heterostructures. ACS Photonics 4(4):971–978.  https://doi.org/10.1021/acsphotonics.7b00037 CrossRefGoogle Scholar
  28. 28.
    Zhao B, Zhang ZM (2017) Resonance perfect absorption by exciting hyperbolic phonon polaritons in 1D hBN gratings. Opt Express 25(7):7791–7796.  https://doi.org/10.1364/OE.25.007791 CrossRefGoogle Scholar
  29. 29.
    Hajian H, Ghobadi A, Butun B, Ozbay E (2017) Nearly perfect resonant absorption and coherent thermal emission by hBN-based photonic crystals. Opt Express 25(25):31970–31987.  https://doi.org/10.1364/OE.25.031970 CrossRefGoogle Scholar
  30. 30.
    Hajian H, Ghobadi A, Butun B, Ozbay E (2018) Tunable, omnidirectional, and nearly perfect resonant absorptions by a graphene-hBN-based hole array metamaterial. Opt Express 26(13):16940–16954.  https://doi.org/10.1364/OE.26.016940 CrossRefGoogle Scholar
  31. 31.
    Autore M, Li P, Dolado I, Alfaro-Mozaz FJ, Esteban R, Atxabal A, Casanova F, Hueso LE, Alonso-González P, Aizpurua J, Nikitin AY, Vélez S, Hillenbrand R (2018) Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light: Sci Appl 7:17172.  https://doi.org/10.1038/lsa.2017.172 CrossRefGoogle Scholar
  32. 32.
    Giles AJ, Dai S, Glembocki OJ, Kretinin AV, Sun Z, Ellis CT, Tischler JG, Taniguchi T, Watanabe K, Fogler MM, Novoselov KS, Basov DN, Caldwell JD (2016) Imaging of anomalous internal reflections of hyperbolic phonon-polaritons in hexagonal boron nitride. Nano Lett 16(6):3858–3865.  https://doi.org/10.1021/acs.nanolett.6b01341 CrossRefGoogle Scholar
  33. 33.
    Jiang JH, Xu XG, Gilburd L, Walker GC (2017) Optical hot-spots in boron-nitride nanotubes at mid infrared frequencies: one-dimensional localization due to random-scattering. Opt Express 25(21):25059–25070.  https://doi.org/10.1364/OE.25.025059 CrossRefGoogle Scholar
  34. 34.
    Brown LV, Davanco M, Sun Z, Kretinin A, Chen Y, Matson JR, Vurgaftman I, Sharac N, Giles AJ, Fogler MM, Taniguchi T, Watanabe K, Novoselov KS, Maier SA, Centrone A, Caldwell JD (2018) Nanoscale mapping and spectroscopy of nonradiative hyperbolic modes in hexagonal boron nitride nanostructures. Nano Lett 18(3):1628–1636.  https://doi.org/10.1021/acs.nanolett.7b04476 CrossRefGoogle Scholar
  35. 35.
    Thongrattanasiri S, Koppens FHL, García de Abajo FJ (2012) Complete optical absorption in periodically patterned graphene. Phys Rev Lett 108:047401.  https://doi.org/10.1103/PhysRevLett.108.047401 CrossRefGoogle Scholar
  36. 36.
    Pu M, Hu C, Wang M, Huang C, Zhao Z, Wang C, Feng Q, Luo X (2011) Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt Express 19(18):17413.  https://doi.org/10.1364/OE.19.017413 CrossRefGoogle Scholar
  37. 37.
    Pu M, Feng Q, Hu C, Luo X (2012) Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film. Plasmonics 7:733–738.  https://doi.org/10.1007/s11468-012-9365-1 CrossRefGoogle Scholar
  38. 38.
    Guo Y, Yan L, Pan W, Luo B, Luo X (2014) Ultra-broadband terahertz absorbers based on 4×4 cascaded metal-dielectric pairs. Plasmonics 9:951–957.  https://doi.org/10.1007/s11468-014-9701-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of ScienceHangzhou Dianzi UniversityHangzhouChina

Personalised recommendations