pp 1–8 | Cite as

Sense of Surface Plasmon Polarization Waveguide of Graphene

  • Jun ZhuEmail author
  • Frank Jiang
  • Qin Yunbai


The honey structure of graphene is used in telecommunications, flexible displays, photonic devices, batteries, and electronic devices, where it achieves high heat dissipation efficiency. In order to obtain the high performances in the field of waveguide and sensor, we proposed a tunable plasmonic waveguide sensor based on periodic grating. The proposed device not only has the outstanding waveguide performance in gain threshold and propagation loss, which can reach 0.00745 dB/nm and 501 cm−1, respectively, but also the temperature sensitivity can achieve 0.28 nm/°C. The performances of waveguide and sensor can be tuned by changing the electronic characteristics of graphene, the structural parameters, and temperature, which indicate that the proposed device has considerable potential in ultra-speed plasma sensor devices, photonic integrated circuits, and tunable optical devices.


Surface plasmon polarization Waveguide Graphene 


Funding Information

This work was financially supported by the Guangxi Natural Science Foundation (2017GXNSFAA198261), Guangxi Key Laboratory of Automatic Detecting Technology and Instruments (YQ19207), Innovation Project of Guangxi Graduate Education(YCSW2019074) “One thousand Young and Middle-Aged College and University Backbone Teachers Cultivation Program” of Guangxi (2019).


  1. 1.
    Maier SA (2001) Plasmonics: a route to nanoscale optical devices. Adv Mater 13(19):1501CrossRefGoogle Scholar
  2. 2.
    Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4(2):83–91CrossRefGoogle Scholar
  3. 3.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830CrossRefGoogle Scholar
  4. 4.
    Francesca P, Katsuhiro I, Kazushi M (2014) A visible light-driven plasmonic photocatalyst. Light Sci Appl 3:e133CrossRefGoogle Scholar
  5. 5.
    Ma XC, Dai Y, Yu L, Huang BB (2010) Energy transfer in plasmonic photocatalytic composites. Light Sci Appl 5:e16017CrossRefGoogle Scholar
  6. 6.
    Klein MW, Wegener M, Feth N (2007) Experiments on second- and third-harmonic generation from magnetic metamaterials: erratum. Opt Express 15:5238CrossRefGoogle Scholar
  7. 7.
    Camden JP, Dieringer JA, Zhao J (2008) Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. Acc Chem Res 41:1653CrossRefGoogle Scholar
  8. 8.
    Vesseur EJR, De Waele R, Kuttge M (2007) Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy. Nano Lett 7:2843CrossRefGoogle Scholar
  9. 9.
    Pala RA, White J, Barnard E (2009) Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv Mater 21:3504CrossRefGoogle Scholar
  10. 10.
    Su YH, Ke YF, Cai SL (2012) Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell. Light Sci Appl 1:e14CrossRefGoogle Scholar
  11. 11.
    Zhang W, Ding F, Li WD (2012) Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting. Nanotechnology 23:225301CrossRefGoogle Scholar
  12. 12.
    Ding K, Ning CZ (2012) Metallic subwavelength-cavity semiconductor nanolasers. Light Sci Appl 1:e20CrossRefGoogle Scholar
  13. 13.
    Kabashin AV, Evans P, Pastkovsky S (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8:867CrossRefGoogle Scholar
  14. 14.
    Henzie J, Lee MH, Odom TW (2007) Multiscale patterning of plasmonic metamaterials. Nat Nanotechnol 2:549CrossRefGoogle Scholar
  15. 15.
    Bergman DJ, Stockman MI (2003) Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys Rev Lett 90(2):027402/1–027402/4CrossRefGoogle Scholar
  16. 16.
    Noginov MA, Zhu G, Belgrave AM et al (2009) Demonstration of spaser-based nanolaser. Nature 460(7259):1110–1112CrossRefGoogle Scholar
  17. 17.
    Oulton RF, Sorger VJ, Thomas Z et al (2009) Plasmon lasers at deep subwavelength scale. Nature 461(7264):629–632CrossRefGoogle Scholar
  18. 18.
    Yang T, Liu X, He Z et al (2017) Tuning of interlayer coupling in large-area graphene/WSe2 van der Waals heterostructure via ion irradiation: optical evidences and photonic applications. ACS Photonics 4:1513Google Scholar
  19. 19.
    Zhu W, Xu T, Wang H et al (2017) Surface plasmon polariton laser based on a metallic trench Fabry-Perot resonator. Sci Adv 3:e1700909CrossRefGoogle Scholar
  20. 20.
    Liu X, Gao J, Yang H et al (2017) Hybrid plasmonic modes in multilayer trench grating structures. Adv Opt Mater 5(22):1700496CrossRefGoogle Scholar
  21. 21.
    Sharon M, Sharon M, Tiwari A (2015) Graphene: an introduction to the fundamentals and industrial applications. Advanced Material Series Wiley-Scrivener, New YorkCrossRefGoogle Scholar
  22. 22.
    Warner JH, Schaffel F, Rummeli M, Bachmatiuk A (2012) Graphene: fundamentals and emergent applications. Elsevier, AmsterdamGoogle Scholar
  23. 23.
    Abajo FJG (2013) Plasmons in graphene on uniaxial substrates. Science 339:917CrossRefGoogle Scholar
  24. 24.
    Karimi F, Davoody AH, Knezevic I (2016) Dielectric function and plasmons in graphene: a self-consistent-field calculation within a Markovian master equation formalism. Phys Rev B 93:205421CrossRefGoogle Scholar
  25. 25.
    Karmi F, Iknezevic (2017) Plasmons in graphene nanoribbons. Phys Rev B 96:125417CrossRefGoogle Scholar
  26. 26.
    Shen Y, Zhou JH, Liu TR et al (2013) Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat Commun 4:2381CrossRefGoogle Scholar
  27. 27.
    Wu T, Liu Y, Yu Z et al (2014) The sensing characteristics of plasmonic waveguide with a single defect. Opt Commun 32:44–48CrossRefGoogle Scholar
  28. 28.
    Wu T, Liu Y, Yu Z et al (2014) The sensing characteristics of plasmonic waveguide with a ring resonator. Opt Express 22:7670Google Scholar
  29. 29.
    Wu DKC, Kuhlmey BT, Eggleton BJ (2009) Ultrasensitive photonic crystal fiber refractive index sensor. Opt Lett 34(3):322–324CrossRefGoogle Scholar
  30. 30.
    Yan H, Xia F, Zhu W, Freitag M (2011) Infrared spectroscopy of wafer-scale graphene. ACS Nano 5:9854–9860CrossRefGoogle Scholar
  31. 31.
    Gao W, Shu J, Qiu C et al (2012) Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano 6:7806CrossRefGoogle Scholar
  32. 32.
    Jablan M, Buljan H, Soljacic M et al (2009) Plasmonics in graphene at infrared frequencies. Phys Rev B 80:245435CrossRefGoogle Scholar
  33. 33.
    Vasic B, Isic G, Gajic R (2013) Localized surface plasmon resonances in graphene ribbon arrays for sensing of dielectric environment at infrared frequencies. J Appl Phys 113:013110CrossRefGoogle Scholar
  34. 34.
    Gusynin VP, Sharapov SG, Carbotte JP (2007) Magneto-optical conductivity in graphene. J Phys Condens Matter 19:026222CrossRefGoogle Scholar
  35. 35.
    O’Hara KM, Hemmer SL, Gehm ME et al (2002) Observation of a strongly interacting degenerate Fermi gas of atoms. Science 298:2179CrossRefGoogle Scholar
  36. 36.
    Zwierlein MW, Abo-Shaeer JR, Schirotzek A et al (2005) Vortices and superfluidity in a strongly interacting Fermi gas. Nature 435:1047CrossRefGoogle Scholar
  37. 37.
    Sensarma R, Randeria M, Ho TL (2006) Vortices in superfluid Fermi gases through the BEC to BCS crossover. Phys Rev Lett 96:090403CrossRefGoogle Scholar
  38. 38.
    Dreizler RM, Gross EKU (1990) Density functional theory: an approach to the quantum many-body problem. Springer, BerlinCrossRefGoogle Scholar
  39. 39.
    Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997CrossRefGoogle Scholar
  40. 40.
    Oulton RF, Sorger VJ, Genov DA et al (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2:496CrossRefGoogle Scholar
  41. 41.
    Coldren, Larry A (1997) Diode lasers and photonic integrated circuits. Opt Eng 36(2):616CrossRefGoogle Scholar
  42. 42.
    Dai D, Shi Y, He S et al (2011) Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium. Opt Express 19:12925CrossRefGoogle Scholar
  43. 43.
    Bian Y, Zheng Z, Liu Y et al (2011) Coplanar plasmonic nanolasers based on edge-coupled hybrid plasmonic waveguides. IEEE Photon Technol Lett 23:1041CrossRefGoogle Scholar
  44. 44.
    Nezhad M, Tetz K, Fainman Y (2004) Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides. Opt Express 12(17):4072–4079CrossRefGoogle Scholar
  45. 45.
    Plum E, Fedotov VA, Kuo P, Tsai DP et al (2009) Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots. Opt Express 17(10):8548–8551CrossRefGoogle Scholar
  46. 46.
    Li Z, Piao R, Zhao J et al (2015) Deep-subwavelength hybrid plasmonic waveguide with metal-semiconductor ribs for nanolaser applications. J Opt 17:125008CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Electronic EngineeringGuangxi Normal UniversityGuilinChina

Personalised recommendations