Advertisement

Plasmonics

, Volume 14, Issue 6, pp 1881–1891 | Cite as

Plasmonic Quantum Dot Nanolaser: Effect of “Waveguide Fermi Energy”

  • Jamal N. Jabir
  • S. M. M. Ameen
  • Amin Habbeb Al-KhursanEmail author
Article
  • 42 Downloads

Abstract

This study models quantum dot (QD) plasmonic nanolaser. A metal/semiconductor/metal (MSM) structure was considered to attain plasmonic nanocavity. The active region (semiconductor layers) contains the following: QD, wetting layer (WL), and barrier layers. Band alignment between layers was used to predict their parameters. Momentum matrix element for transverse magnetic (TM) mode in QD structure was formulated. Waveguide Fermi energy was introduced and formulated, for the first time, in this work to cover the waveguide contribution (Ag metal layer) in addition to the active region. The high net modal gain was obtained when the waveguide Fermi energy was considered which meant that the increment comes from the material gain, not from the confinement factor. The obtained results were reasoned the high gain due to the change in waveguide Fermi energy in the valence band, where the valence band QD states are fully occupied that are referring to an efficient hole contribution.

Keywords

Surface plasmon polariton Quantum dot Plasmonic nanolaser 

Notes

References

  1. 1.
    Chang S-W, Lin T-R, Chuang SL (2010) Theory of plasmonic Fabry-Perot nanolasers. Opt Express 18:15039–15053CrossRefGoogle Scholar
  2. 2.
    Ni C-YA, Chang S-W, Gargas DJ, Moore MC, Yang P, Chuang SL (2011) Metal-coated zinc oxide nanocavities. IEEE J Quantum Electron 47:245–251CrossRefGoogle Scholar
  3. 3.
    Lu C-Y, Chuang SL (2011) A surface-emitting 3D metal-nanocavity laser: proposal and theory. Opt Express 19:13225–13244CrossRefGoogle Scholar
  4. 4.
    Chang S-W, Ni C-YA, Chuang SL (2008) Theory for bowtie plasmonic nanolasers. Opt Express 16:10580–10595CrossRefGoogle Scholar
  5. 5.
    Dwara SN, Al-Khursan AH (2015) Quantum efficiency of InSbBi quantum dot photodetector. Appl Opt 54:9722–9727CrossRefGoogle Scholar
  6. 6.
    Li DB, Ning CZ (2010) Peculiar features of confinement factors in a metal-semiconductor waveguide. Appl Phys Lett 96:181109CrossRefGoogle Scholar
  7. 7.
    Chang SW, Chuang SL (2009) Fundamental formulation for plasmonic nanolaser. IEEE J Quantum Electron 45:1014–1023CrossRefGoogle Scholar
  8. 8.
    Kim J, Laemmlin M, Meuer C, Bimberg D, Eisenstein G (2008) Static gain saturation model of quantum-dot semiconductor optical amplifiers. IEEE J Quantum Electron 44:658–666CrossRefGoogle Scholar
  9. 9.
    Li DB, Ning CZ (2009) Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure. Phys Rev B 80:153304CrossRefGoogle Scholar
  10. 10.
    Yu H, Schaekers M, Barla K, Horiguchi N, Collaert N, Thean AV-Y, De Meyer K (2016) Contact resistivities of metal-insulator-semiconductor contacts and metal-semiconductor contacts. Appl Phys Lett 108:171602CrossRefGoogle Scholar
  11. 11.
    Agrawal A, Lin J, Barth M, White R, Zheng B, Chopra S, Gupta S, Wang K, Gelatos J, Mohney SE, Datta S (2014) Fermi level depinning and contact resistivity reduction using a reduced titania interlayer in n-silicon metal-insulator-semiconductor ohmic contacts. App Phys Lett 104:112101CrossRefGoogle Scholar
  12. 12.
    Orfanidis SJ (2014) Electromagnetic waves and antennas. Rutgers UniversityGoogle Scholar
  13. 13.
    Krishnamurthy V, Klein B (2008) Theoretical investigation of metal cladding for nanowire and cylindrical micropost lasers. IEEE J Quantum Electron 44:67–74CrossRefGoogle Scholar
  14. 14.
    Ikeda K, Fainman Y, Alan Shore K, Kawaguchi H (2011) Modified long-range surface plasmon polariton modes for laser nanoresonators. J Appl Phys 110:063106CrossRefGoogle Scholar
  15. 15.
    Numai T (2015) Fundamentals of semiconductor lasers. SpringerGoogle Scholar
  16. 16.
    Huang YZ, Pan Z, Wu RH (1996) Analysis of the optical confinement factor in semiconductor lasers. J Appl Phys 79:3827CrossRefGoogle Scholar
  17. 17.
    Chuang SL (2009) Physics of photonic devices, 2nd edn. WileyGoogle Scholar
  18. 18.
    Coldren LA, Crozine SW, Milan L (2012) Masanovic, diode lasers and photonic integrated circuits, 2nd edn. WileyGoogle Scholar
  19. 19.
    Chang SW, Chuang SL (2009) Normal modes for plasmonic nanolasers with dispersive and inhomogeneous media. Opt Lett 34:91–93CrossRefGoogle Scholar
  20. 20.
    Kim J, Chuang SL (2006) Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers. IEEE J Quantum Electron 42:942–952CrossRefGoogle Scholar
  21. 21.
    Al-Husseini H, Amin H, Al-Khursan, Al-Dabagh SY (2009) III-N QD lasers. Open Nanosci J 3:1–11CrossRefGoogle Scholar
  22. 22.
    Asada M, Miyamoto Y, Suematsu Y (1986) Gain and the threshold of three-dimensional quantum-box lasers. IEEE J Quantum Electron 22:1915–1921CrossRefGoogle Scholar
  23. 23.
    Zory PS (1993) Quantum well lasers. ElsevierGoogle Scholar
  24. 24.
    Abbas MN, Mohammed DS (2015) Quality factor improvement for nano cavity. Int J Comput Appl 127:22–25Google Scholar
  25. 25.
    Yu H, Schaekers M, Schram T, Demuynck S, Horiguchi N, Barla K, Collaert N, Thean A, De Meyer KM (2016) Thermal stability concern of metal-insulator semiconductor contact: a case study of Ti/TiO2/n-Si contact. IEEE Trans Electron Devices 63:2671–2676CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of ScienceUniversity of BasrahBasrahIraq
  2. 2.Nassiriya Nanotechnology Research Laboratory (NNRL), Science CollegeThi-Qar UniversityNassiriyaIraq
  3. 3.Department of Physics, College of EducationUniversity of Al-QadisiyahAl DiwaniyahIraq

Personalised recommendations