, Volume 14, Issue 6, pp 1311–1319 | Cite as

Structure Metallic Surface for Terahertz Plasmonics

  • E. Manikandan
  • S. Sasi PrincyEmail author
  • B. S. Sreeja
  • S. Radha


Plasmonics is the field of study of the interaction between incident light and electrons in metals. It is used widely for developing nanophotonic devices. The structured metallic surface such as metamaterials can be used to produce spoof surface plasmons at any frequencies with the dimensions of unit cell less than the incident wavelength. Terahertz plasmonics is attracted to the field of research since it is used for sensing biological components even in a weak environment. The issue with planar metamaterials is a lower quality factor value. Several methods have been adopted for obtaining high Q-value in metamaterials. Among them, Fano- and Toroidal-based metamaterials offer high Q-factor and string localized field enhancement. This article discusses the importance and developments in the field of high-Q terahertz metamaterial for plasmonics applications. The nonlinear responses of terahertz metamaterial under high-intense THz pulses are also discussed.


Fano Metamaterial Plasmonics Q-factor Sensing Terahertz 



  1. 1.
    Ghann W and Uddin J, (2017) “Terahertz (THz) spectroscopy : a cutting - edge terahertz (thz) spectroscopy : a cutting - edge technology technology,” p. 62805Google Scholar
  2. 2.
    Rahm M, Nahata A, Akalin T, Beruete M, Sorolla M (2015) Focus on terahertz plasmonics. New J Phys 17(10):16–18CrossRefGoogle Scholar
  3. 3.
    Xu W, Xie L, Ying Y (2017) Mechanisms and applications of terahertz metamaterial sensing: a review. Nanoscale 9:13864–13878PubMedCrossRefGoogle Scholar
  4. 4.
    Gupta M, Singh R (2016) Toroidal versus Fano resonances in high Q planar THz metamaterials. Adv Opt Mater 4(12):2119–2125CrossRefGoogle Scholar
  5. 5.
    Srivastava V (2018) Design of a microfabricated planar slow wave structure for a 0.22-THz TWT for communication, imaging and remote sensing. IETE Technical Review:1–9Google Scholar
  6. 6.
    Sujit Chattopadhyay, Pradip Kumar Saha,“IYL 2015 –challenges for electrical engineers in nanophotonics", IETE Tech Rev, 2016Google Scholar
  7. 7.
    Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of ε and μ. In: vol. 509Google Scholar
  8. 8.
    Pendry JB, Holden AJ, Robbins DJ, and Stewart WJ, (1999) “Magnetism from conductors and enhanced nonlinear phenomena,” vol. 47(11) 2075–2084Google Scholar
  9. 9.
    Withayachumnankul W, Abbott D (2009) Metamaterials in the terahertz regime. IEEE Photonics J 1(2):99–118CrossRefGoogle Scholar
  10. 10.
    RoyChoudhury S, Rawat V, Jalal AH, Kale SN, Bhansali S (2016) Recent advances in metamaterial split-ring-resonator circuits as biosensors and therapeutic agents. Biosens Bioelectron 86:595–608PubMedCrossRefGoogle Scholar
  11. 11.
    Sihvola A (2007) Metamaterials in electromagnetics. Metamaterials 1:2–11CrossRefGoogle Scholar
  12. 12.
    Allen SJ and Bill M (1977) “Observation of the two-dimensional plasmon in silicon inversion layers,” vol. 3, no 17Google Scholar
  13. 13.
    Chen H, Padilla WJ, Zide JMO, Gossard AC, Taylor AJ, and Averitt RD (2006) “Active terahertz metamaterial devices,” no. June 2016PubMedCrossRefGoogle Scholar
  14. 14.
    Boardman AD (1982) Electromagnetic surface modes. Wiley, New YorkGoogle Scholar
  15. 15.
    Kushwaha MS (2001) “Plasmons and magnetoplasmons in semiconductor heterostructures”CrossRefGoogle Scholar
  16. 16.
    Wang X, Belyanin AA, Crooker SA, Mittleman DM, Kono J (2009) Interference-induced terahertz transparency in a semiconductor magneto-plasma. Nat Phys 6(2):126–130CrossRefGoogle Scholar
  17. 17.
    Rivas JG et al, “Low-frequency active surface plasmon optics on semiconductors,” vol. 082106, pp. 8–11, 2006Google Scholar
  18. 18.
    Astley V, Mendis R, and Mittleman DM (2009) “Characterization of terahertz field confinement at the end of a tapered metal wire waveguide,” pp. 3–6Google Scholar
  19. 19.
    Rusina A, Durach M, Nelson KA, and Stockman MI (2018) “Nanoconcentration of terahertz radiation in plasmonic waveguides,” pp. 1–8Google Scholar
  20. 20.
    Zhan H, Mendis R, and Mittleman DM (2010) “Superfocusing terahertz waves below λ / 250 using plasmonic parallel-plate waveguides,” vol. 18, no. 9, pp. 9643–9650Google Scholar
  21. 21.
    Garcı FJ, Maier SA, Andrews SR, and Martı L, (2006) “Terahertz surface plasmon-polariton propagation and focusing,” vol. 176805, no. October, pp. 1–4Google Scholar
  22. 22.
    Yu N et al. (2010) “Terahertz plasmonics,” no. 3, pp. 52–58Google Scholar
  23. 23.
    Azad AK, Hara JFO, Singh R, Chen H, Taylor AJ (2013) A review of terahertz plasmonics in subwavelength holes on conducting films. IEEE J Sel Top Quantum Electron 19(1):8400416CrossRefGoogle Scholar
  24. 24.
    Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100:207402PubMedCrossRefGoogle Scholar
  25. 25.
    Cheng YZ et al. (2014) “Ultrabroadband plasmonic absorber for terahertz waves,” pp. 1–5Google Scholar
  26. 26.
    Withayachumnankul W, Shah CM, Fumeaux C, Benjamin S, Ung Y, Padilla WJ, Bhaskaran M, Abbott D, Sriram S (2014) Plasmonic resonance toward terahertz perfect absorbers. ACS Photonics 1:625–630CrossRefGoogle Scholar
  27. 27.
    Di Pietro P, Roy APP, Di FBEM, and Lupi FS (2014) “Resonating terahertz response of periodic arrays of subwavelength apertures,”Google Scholar
  28. 28.
    Padhy P, Kumar P, Jha R (2016) Sensors and actuators B : chemical metal wire waveguide based all plasmonic refractive index sensor for terahertz frequencies. Sensors Actuators B Chem 225:115–120CrossRefGoogle Scholar
  29. 29.
    Yen TJ, Padilla WJ, Fang N, Vier DC, Smith DR, Pendry JB, Basov DN, Zhang X (2004) Terahertz magnetic response from artificial materials. Science (80- ) 303(5663):1494–1496CrossRefGoogle Scholar
  30. 30.
    Wu C, Khanikaev AB, Adato R, Arju N, Yanik AA, Altug H, Shvets G (2012) Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat Mater 11(1):69–75CrossRefGoogle Scholar
  31. 31.
    Singh R, Al-Naib IAI, Koch M, Zhang W (2011) Sharp Fano resonances in THz metamaterials. Opt Express 19(7):6312–6319PubMedCrossRefGoogle Scholar
  32. 32.
    Wu J et al (2016) Magnetic Fano resonances by design in symmetry broken THz meta-foils. Sci Rep 7(October):1–9, 2017Google Scholar
  33. 33.
    Gong C et al (2016) Broadband terahertz metamaterial absorber based on sectional asymmetric structures. Sci Rep 6(May):1–8Google Scholar
  34. 34.
    Tao H, Chieffo LR, Brenckle MA, Siebert SM, Liu M, Strikwerda AC, Fan K, Kaplan DL, Zhang X, Averitt RD, Omenetto FG (2011) Metamaterials on paper as a sensing platform. Adv Mater 23(28):3197–3201PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Fan Y, Wei Z, Li H, Chen H, Soukoulis CM (2013) Low-loss and high-Q planar metamaterial with toroidal moment. Phys Rev B - Condens Matter Mater Phys 87(11):1–5CrossRefGoogle Scholar
  36. 36.
    Li L et al (2016) Reconfigurable all-dielectric metamaterial frequency selective surface based on high-permittivity ceramics. Sci Rep 6(April):1–8Google Scholar
  37. 37.
    Zhao X et al, (2016) “Nonlinear terahertz metamaterial perfect absorbers using GaAs [ Invited ],” vol. 4, no. 3, pp. 16–21Google Scholar
  38. 38.
    Seren HR et al, (2016) “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” vol. 5, no. 5, pp. e16078–e16077Google Scholar
  39. 39.
    Wu J, Zhang C, Liang L, Jin B, Kawayama I, Murakami H, Kang L, Xu W, Wang H, Chen J, Tonouchi M, Wu P (2014) Nonlinear terahertz superconducting plasmonics. In: vol. 162602, vol 105, p 162602Google Scholar
  40. 40.
    Keiser GR, Karl N, Liu PQ, Tulloss C, Chen HT, Taylor AJ, Brener I, Reno JL, Mittleman DM (2017) Nonlinear terahertz metamaterials with active electrical control. In: vol. 121101, vol 111, p 121101Google Scholar
  41. 41.
    Manikandan Esakkimuthu SB, Suseela R, Sankararajan A, Gupta GR, Prabhu S (2017) Laser patterning of thin film copper and ITO on flexible substrates for terahertz antenna applications. J Laser Micro Nanoeng 12(3):313–320Google Scholar
  42. 42.
    Manikandan E, Sreeja BS, Radha S, Bathe RN (2018) Direct laser fabrication of five-band symmetric terahertz metamaterial with Fano resonance. Mater Lett 229:320–323CrossRefGoogle Scholar
  43. 43.
    Manikandan E, Sreeja BS, Radha S, Duraiselvam M, Gupta A, Prabhu S (2018) Microfabrication of terahertz frequency-selective surface by short- and ultrashort laser ablation. Opt Eng 58(1):011007 1–011007 6Google Scholar
  44. 44.
    Manikandan E, Sreeja BS, Radha S, Bathe RN, Jain R (2018) A rapid fabrication of novel dual band terahertz metamaterial by femtosecond laser ablation. J Infrared, Millimeter, Terahertz WavesCrossRefGoogle Scholar
  45. 45.
    Esakkimuthu M, Suseela SB, Sankarrajan R, Gupta A, Prabhu S (2019) Microfabrication of low cost frequency selective surface for terahertz wave by laser ablation. Journal of Elec Materi 48:2423–2429. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.SSN College of EngineeringChennaiIndia

Personalised recommendations