Advertisement

Plasmonics

, Volume 14, Issue 6, pp 1717–1723 | Cite as

Tunable Plasmon-Induced Transparency with Ultra-Broadband in Dirac Semimetal Metamaterials

  • Yongliang Liu
  • Yuning Du
  • Wenqian Liu
  • Sanmin ShenEmail author
  • Qiulin TanEmail author
  • Jijun Xiong
  • Wendong Zhang
Article
  • 153 Downloads

Abstract

We proposed a numerical and theoretical research on the realization of the tunable plasmon-induced transparency (PIT) with ultra-broadband at terahertz frequencies in Dirac semimetal metamaterials. The effect of temperature on the PIT window was analyzed simultaneously. The magnetic dipole coupling between “bright mode” and “dark mode” leads to a novel PIT optical response. Simulation results show that the maximum bandwidth of PIT window can be increased to 426 GHz and 393 GHz by adjusting the dimensions of d1 and d2 in the Dirac asymmetrical structure, respectively. Moreover, we can dynamically tune the PIT window frequency from 1.257 to 1.508 THz by adjusting the Fermi energy from 70 to 90 meV. Furthermore, a positive group delay of about 0.75 ps can be obtained by varying the Fermi energy in the proposed structure. These results will bring a variety of potential applications in terahertz field.

Keywords

Terahertz Dirac semimetal Plasmon-induced transparency Metamaterial 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51875534, U1837209, 51425505), the Outstanding Young Talents Support Plan of Shanxi province, and the Shanxi “1311 Project” Key Subjects Construction.

References

  1. 1.
    Boller KJ, Imamoğlu A, Harris SE (1991) Observation of electromagnetically induced transparency. Phys Rev Lett 66(20):2593–2596CrossRefGoogle Scholar
  2. 2.
    Papasimakis N, Fu YH, Fedotov V, Prosvirnin SL, Tsai DP, Zheludev NI (2009) Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency. Appl Phys Lett 94(21):211902CrossRefGoogle Scholar
  3. 3.
    Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X (2011) A graphene-based broadband optical modulator. Nature 474:64–67CrossRefGoogle Scholar
  4. 4.
    Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 1:641–648CrossRefGoogle Scholar
  5. 5.
    Dong ZG, Liu H, Cao JX, Li T, Wang SM, Zhu SN, Zhang X (2010) Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials. Appl Phys Lett 97:114101CrossRefGoogle Scholar
  6. 6.
    Phillips DF, Fleischhauer A, Mair A, Walsworth RL, Lukin MD (2001) Storage of light in atomic vapor. Phys Rev Lett 86(5):783–786CrossRefGoogle Scholar
  7. 7.
    Chen J, Wang P, Chen C, Lu Y, Ming H, Zhan Q (2011) Plasmonic EIT-like switching in bright-dark-bright plasmon resonators. Opt Express 19(7):5970–5978CrossRefGoogle Scholar
  8. 8.
    Schmidt H, Ram RJ (2000) All-optical wavelength converter and switch based on electromagnetically induced transparency. Appl Phys Lett 76(22):3173–3175CrossRefGoogle Scholar
  9. 9.
    Chen M, Singh L, Xu N, Singh R, Zhang W, Xie L (2017) Terahertz sensing of highly absorptive water-methanol mixtures with multiple resonances in metamaterials. Opt Express 25(13):14089–14097CrossRefGoogle Scholar
  10. 10.
    Duan X, Chen S, Yang H, Cheng H, Li J, Liu W, Gu C, Tian J (2012) Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials. Appl Phys Lett 101:143105CrossRefGoogle Scholar
  11. 11.
    Gu J, Singh R, Liu X, Zhang X, Ma Y, Zhang S, Maier SA, Tian Z, Azad AK, Chen H-T, Taylor AJ, Han J, Zhang W (2012) Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat Commun 3:1151CrossRefGoogle Scholar
  12. 12.
    Shao J, Li J, Li J, Wang Y-K, Dong Z-G, Chen P (2013) Analogue of electromagnetically induced transparency by doubly degenerate modes in a U-shaped metamaterial. Appl Phys Lett 102:034106CrossRefGoogle Scholar
  13. 13.
    Liu M, Yang QL, Xu Q, Chen XY, Tian Z et al (2018) Tailoring mode interference in plasmon-induced transparency metamaterials. J Phys D Appl Phys 51:174005CrossRefGoogle Scholar
  14. 14.
    Chen H, Zhang H, Guo X, Liu S, Zhang Y (2018) Tunable plasmon-induced transparency in H-shaped Dirac semimetal metamaterial. Appl Opt 57(4):752–756CrossRefGoogle Scholar
  15. 15.
    Zhu Z, Yang X, Gu J, Jiang J, Yue W, Tian Z, Tonouchi M, Han J, Zhang W (2013) Broadband plasmon induced transparency in terahertz metamaterials. Nanotechnology 24:214003CrossRefGoogle Scholar
  16. 16.
    Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönnichsen C, Giessen H (2010) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10:1103–1107CrossRefGoogle Scholar
  17. 17.
    Lu YH, Rhee JY, Jang WH, Lee YP (2010) Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance. Opt Express 18(20):20912–20917CrossRefGoogle Scholar
  18. 18.
    Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109–162CrossRefGoogle Scholar
  19. 19.
    Choi SM, Jhi SH, Son Y-W (2010) Effects of strain on electronic properties of graphene. Phys Rev B Condens Matter 81(8):081407CrossRefGoogle Scholar
  20. 20.
    Molitor F, Güttinger J, Stampfer C, Dröscher S, Jacobsen A, Ihn T, Ensslin K (2011) Electronic properties of graphene nanostructures. J Phys Condens Matter 23(24):243201CrossRefGoogle Scholar
  21. 21.
    Singh R, Cao W, Al-Naib IAI, Cong LQ, Withayachumnankul W, Zhang WL (2014) Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces. Appl Phys Lett 105:171101CrossRefGoogle Scholar
  22. 22.
    Shi X, Su X, Yang Y (2015) Enhanced tunability of plasmon induced transparency in graphene strips. Appl Phys 117(14):143101CrossRefGoogle Scholar
  23. 23.
    Bao Q, Loh KP (2012) Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6(5):3677–3694CrossRefGoogle Scholar
  24. 24.
    Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B, Cava RJ (2014) Experimental realization of a three-dimensional Dirac semimetal. Phys Rev Lett 113:027603CrossRefGoogle Scholar
  25. 25.
    Kotov OV, Lozovik YE (2016) Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films. Phys Rev B 93(23):235417CrossRefGoogle Scholar
  26. 26.
    Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4:611–622CrossRefGoogle Scholar
  27. 27.
    Koppens FHL, Mueller T, Avouris P, Ferrari AC, Vitiello MS, Polini M (2014) Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol 9:780–793CrossRefGoogle Scholar
  28. 28.
    Liu ZK, Jiang J, Zhou B, Wang ZJ, Zhang Y, Weng HM, Prabhakaran D, Mo S-K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen ZX, Feng DL, Hussain Z, Chen YL (2014) A stable threedimensional topological Dirac semimetal Cd3As2. Nat Mater 13(7):677–681CrossRefGoogle Scholar
  29. 29.
    Parameswaran SA, Grover T, Abanin DA, Pesin DA, Vishwanath A (2014) Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals. Phys Rev X 4:031035Google Scholar
  30. 30.
    He LP, Hong XC, Dong JK, Pan J, Zhang Z, Zhang J, Li SY (2014) Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd3As2. Phys Rev Lett 113:246402CrossRefGoogle Scholar
  31. 31.
    Liang T, Gibson Q, Ali MN, Liu M, Cava RJ, Ong NP (2014) Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat Mater 14(3):280CrossRefGoogle Scholar
  32. 32.
    Liu G-D, Zhai X, Meng H-Y, Lin Q, Huang Y, Zhao C-J, Wang L-L (2018) Dirac semimetals based tunable narrowband absorber at terahertz frequencies. Opt Express 26(9):11471–11480CrossRefGoogle Scholar
  33. 33.
    Chen H, Zhang H, Liu M, Zhao Y, Guo X, Liu S, Zhang Y (2017) Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals. Opt Mater Express 7(9):3397CrossRefGoogle Scholar
  34. 34.
    Fu GL, Z X, Li HL, Xia SX, Wang LL (2016) Tunable plasmon-induced transparency based on bright-bright mode coupling between two parallel graphene nanostrips. Plasmonics 11(6):1597–1602CrossRefGoogle Scholar
  35. 35.
    Timusk T, Carbotte JP, Homes CC, Basov DN, Sharapov SG (2013) Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity. Phys Rev B 87(23):235121CrossRefGoogle Scholar
  36. 36.
    Hwang J, Roh JW (2017) Electrically tunable two-dimensional metasurfaces at near-infrared wavelengths. Opt Express 25(21):25071–25078CrossRefGoogle Scholar
  37. 37.
    Li Z, Yu N (2013) Modulation of mid-infrared light using graphene-metal plasmonic antennas. Appl Phys Lett 102(13):131108CrossRefGoogle Scholar
  38. 38.
    Tassin P, Zhang L, Koschny T, Economou EN, Soukoulis CM (2009) Low-loss metamaterials based on classical electromagnetically induced transparency. Phys Rev Lett 102:053901CrossRefGoogle Scholar
  39. 39.
    Ding CF, Jiang LK, Wu L, Gao RM, Xu DG, Zhang GZ, Yao JQ (2015) Dual-band ultrasensitive THz utilizing high quality Fano and quadrupole resonances in metamaterials. Opt Commun 350:103–107CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of EducationNorth University of ChinaTai YuanChina
  2. 2.Science and Technology on Electronic Test and Measurement LaboratoryNorth University of ChinaTai YuanChina

Personalised recommendations