pp 1–10 | Cite as

Hydrodynamic Analysis and Responsivity Improvement of a Metal/Semiconductor/Metal Plasmonic Detector

  • Elahe Rastegar Pashaki
  • Hassan KaatuzianEmail author
  • Abdolber Mallah Livani


Characteristic improvements of photon/plasmon detectors have been the subject of several investigations in the area of plasmonic integrated circuits. Among different suggestions, silicon-based metal-semiconductor-metal (MSM) waveguides are one of the most popular structures for the implementation of high-quality photon/plasmon detectors in infrared wavelengths. In this paper, an integrated silicon-germanium (SiGe) core MSM plasmon detector is proposed to detect λ = 1550 nm with internal photoemission mechanism. Performance characteristics of the new sub-micron device are simulated with a simplified hydrodynamic model. In a specific bias point (V = 3 V and the incident optical power of 0.31 mW), the output current is 404.3 μA (276 μA detection current and 128.3 μA dark current), responsivity is 0.89 A/W, and the 3-dB electrical bandwidth is 120 GHz. Simulation results for the proposed plasmon detector, in comparison with the empirical results of a reported Si-based MSM device, demonstrate considerable responsivity enhancement.


Plasmonics Detector Internal photoemission SiGe Simplified hydrodynamic model 



  1. 1.
    Chen H, Liu H, Zhang Z, Hu K, Fang X (2016) Nanostructured photodetectors: from ultraviolet to terahertz. Adv Mater 28:403–433CrossRefGoogle Scholar
  2. 2.
    Berini P (2013) Surface plasmon photodetectors and their applications. Laser Photonics Rev 8:197–220. CrossRefGoogle Scholar
  3. 3.
    Alavirad M, Olivieri A, Roy L, Berini P (2016) High-responsivity sub-bandgap hot-hole plasmonic Schottky detectors. Opt Express 24:22544–22554CrossRefGoogle Scholar
  4. 4.
    Ishi T, Fujikata J, Makita K, Baba T, Ohashi K (2005) Si nano-photodiode with a surface plasmon antenna. Jpn J Appl Phys 44:L364–L366CrossRefGoogle Scholar
  5. 5.
    Rosenburg J, Shenoi RV, Vandervelde TE, Krishna S, Painter O (2009) A multispectral and polarization-selective surface-plasmon resonant midinfrared detector. Appl Phys Lett 95:161101CrossRefGoogle Scholar
  6. 6.
    Akbari RNT, Berini P (2010) Surface plasmon waveguide Schottky detector. Opt Express 18:8505–8514CrossRefGoogle Scholar
  7. 7.
    Livani AM, Kaatuzian H (2017) Modulation–frequency analysis of an electrically pumped plasmonic amplifier. Plasmonics 12(1):27–32CrossRefGoogle Scholar
  8. 8.
    Moazzam MK, Kaatuzian H (2015) Design and investigation of a N-type metal/insulator/semiconductor/metal structure 2-port electro-plasmonic addressed routing switch. Appl Opt 54(20):6199–6207CrossRefGoogle Scholar
  9. 9.
    Scales C, Breukelaar I, Charbonneau R, Berini P (2011) Infrared performance of symmetric surface-plasmon waveguide Schottky detectors in Si. J Lightwave Technol 29:1852–1860CrossRefGoogle Scholar
  10. 10.
    Goykhman B, Desiatov J, Khurgin J, Shappir UL (2012) Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band. Opt Express 20:28594–28602CrossRefGoogle Scholar
  11. 11.
    Muehlbrandt S, Melikyan A, Harter T, Köhnle K, Muslija A, Vincze P, Wolf S, Jakobs P, Fedoryshyn Y, Freude W, Leuthold J, Koos C, Kohl M (2016) Silicon-plasmonic internal-photoemission detector for 40 Gbit/s data reception. OPTICA Optical Society of America 3(7):741–747Google Scholar
  12. 12.
    Salamin Y, Ma P, Baeuerle B, Emboras A, Fedoryshyn Y, Heni W, Cheng B, Josten A, Leuthold J (2018) 100 GHz plasmonic photodetector. ACS Photonics 5:3291–3297CrossRefGoogle Scholar
  13. 13.
    Singh J (1994) Semiconductor devices: instructor’s manual. McGraw Hill Higher Education, New YorkGoogle Scholar
  14. 14.
    Ashburn P (2003) SiGe heterojunction bipolar transistors. John Wiley & Sons, HobokenCrossRefGoogle Scholar
  15. 15.
    Rastegar Pashaki E, Kaatuzian H, Mallah Livani A, Ghodsi H (2018) Design and investigation of a balanced silicon-based plasmonic internal-photoemission detector. Appl Phys B Laser Opt.
  16. 16.
    Lang DV (1985) Measurement of the band gap of GexSi1-X/Si strained-layer hetero-structures. Appl Phys Lett 47(12):1333–1335CrossRefGoogle Scholar
  17. 17.
    Sze SM (1981) Physics of semiconductor devices, chap. 5, 2nd ed, Wiley-Inter science publicationGoogle Scholar
  18. 18.
    Silvaco, Inc (2013) Atlas User’s Manual [online]. Available: Accessed 26 August 2016
  19. 19.
    Maier SA (2007) Plasmonics: fundamentals and applications, chap.2. Springer, BerlinCrossRefGoogle Scholar
  20. 20.
    Ung B, Sheng Y (2007) Interference of surface waves in a metallic nano-slit. Opt Express 15:1182–1190CrossRefGoogle Scholar
  21. 21.
    Apanovich Y et al (1995) Numerical simulation of sub-micrometer devices, including coupled non-local transport and non-isothermal effects. IEEE Trans Electron Devices 42(5):890–898CrossRefGoogle Scholar
  22. 22.
    Apanovich Y et al (1994) Steady-state and transient analysis of sub-micron devices using energy balance and simplified hydrodynamic models. IEEE Trans Comp Aided Des Integr Circuits Syst 13(6):702–710CrossRefGoogle Scholar
  23. 23.
    Richey DJ, Cressler JD, Joseph AJ (1997) Scaling issues and profile optimization in advanced UHV/CVD SiGe HBTs. IEEE Trans Elect Dev 44:431–440CrossRefGoogle Scholar
  24. 24.
    Cressler JD, Guofu N (2002) Silicon germanium heterojunction bipolar transistors. Artech House, Boston, LondonGoogle Scholar
  25. 25.
    Matsuzawa K, Uchida K, Nishiyama A (2000) A unified simulation of Schottky and Ohmic contacts. IEEE Trans Electron Devices 47(1):103–108CrossRefGoogle Scholar
  26. 26.
    Ieong M, Solomon P, Laux S, Wong H, Chidambarro D (1998) Comparison of raised and Schottky source/drain MOSFETs using a novel tunneling contact model. In: Proceedings of IEDM, pp 733–736Google Scholar
  27. 27.
    Scales C, Berini P (2010) Thin-film Schottky barrier photodetector models. IEEE J Quantum Electron 46(5):633–643CrossRefGoogle Scholar
  28. 28.
    Bernardi M, Mustafa J, Neaton JB, Louie SG (2015) Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals. Nat Commun 6.
  29. 29.
    Bufler FM, Graf P, Meinerzhagen B, Adeline D, Rieger MM, Kabbel H (1997) Low- and high-field electron-transport parameters for unstrained and strained Si1-xGex. IEEE Elect Dev Lett 18:264–266CrossRefGoogle Scholar
  30. 30.
    Kaatuzian H (2017) Photonics, Vol. 1, chap. 2, 5’th printing, AmirKabir University PressGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Elahe Rastegar Pashaki
    • 1
  • Hassan Kaatuzian
    • 1
    Email author
  • Abdolber Mallah Livani
    • 2
  1. 1.Photonics Research Laboratory, Electrical Engineering DepartmentAmirkabir University of TechnologyTehranIran
  2. 2.Electrical Engineering DepartmentMazandaran University of Science and TechnologyBehshahrIran

Personalised recommendations