pp 1–10 | Cite as

Design and Fabrication of a Silver Nanocluster-Based Aptasensor for Lysozyme Detection

  • Leila Safaee Ardekani
  • Tahereh Tohidi Moghadam
  • Peter Waaben ThulstrupEmail author
  • Bijan RanjbarEmail author


Lysozyme is a universal part of the innate immune system and is present in various bodily fluids. It is also vastly studied as a biomarker for a variety of diseases and is used in the food industry as a preservative. However, due to lack of a universal and precise detection method, new techniques are highly sought after for this purpose. Here, we introduce a silver nanocluster-based aptasensor to detect lysozyme with high sensitivity. The sensor consists of an RNA aptamer and a complementary DNA sequence with a silver nanocluster template. Silver nanoclusters were synthesized by reduction of silver nitrate in the presence of complementary DNA sequence and characterized by transmission electron microscopy, UV-Visible, fluorescence, and circular dichroism spectroscopy. Emission of the silver nanoclusters switched between low and high intensity based on the quenching ability of the aptamer for DNA-silver nanoclusters and the binding affinity of the aptamer for lysozyme. In the presence of the aptamer, DNA-silver nanoclusters show low fluorescence due to the hybridization of the aptamer, and hence disruption in the formation of DNA-silver nanoclusters. Upon addition of lysozyme, aptamer binding to the DNA-templated silver nanoclusters will be inhibited due to the stronger interaction between the aptamer and lysozyme. Presence of the free DNA template leads to a restored fluorescence signal of DNA-silver nanoclusters which is dependent upon the lysozyme concentration. By utilizing this strategy, the complementary DNA-templated silver nanoclusters sensor can detect concentrations of lysozyme lower than 10 nM via a signal in the visible spectral region. The proposed sensor presents valuable features such as low-cost, high sensitivity, easy fabrication, and convenient operation for detection of lysozyme.


Lysozyme Silver nanocluster Aptamer Biosensor 



RNA aptamer


Complementary DNA




Silver nanoclusters


Human serum albumin

Cyt C

Cytochrome C


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11468_2019_954_MOESM1_ESM.pdf (813 kb)
ESM 1 (PDF 813 kb)


  1. 1.
    Huang J, Zhu Z, Bamrungsap S, Zhu G, You M, He X, Wang K, Tan W (2010) Competition-mediated pyrene-switching aptasensor: probing lysozyme in human serum with a monomer-excimer fluorescence switch. Anal Chem 82:10158–10163. CrossRefGoogle Scholar
  2. 2.
    Mörsky P, Aine E (1983) Determination of lysozyme in tears by immunoturbidimetric and optimised kinetic bacteriolytic methods. Clin Chim Acta 129:201–209. CrossRefGoogle Scholar
  3. 3.
    WG Guder WH (2008) Clinical role of urinary low molecular weight proteins: their diagnostic and prognostic implications. Scand J Clin 241:95–98CrossRefGoogle Scholar
  4. 4.
    Shima K, Hirota M, Fukuda M, Tanaka A (1986) Determination of urinary lysozyme for potential detection of tubular dysfunction in diabetic nephropathy. Clin Chem 32:1818–1822Google Scholar
  5. 5.
    Ha L, Torsteinsdo I, Gudbjo B (1999) Serum lysozyme : a potential marker of monocyte / macrophage activity in rheumatoid arthritis. Rheumatology (Oxford) 38:1249–1254CrossRefGoogle Scholar
  6. 6.
    Charytan DM (2009) A forgotten cause of kidney injury in chronic myelomonocytic leukemia. Am J Kidney Dis 54:159–164. CrossRefGoogle Scholar
  7. 7.
    Tran DT, Janssen KPF, Pollet J, Lammertyn E, Anné J, Van Schepdael A et al (2010) Selection and characterization of DNA aptamers for egg white lysozyme. Molecules 15:1127–1140. CrossRefGoogle Scholar
  8. 8.
    Ocaña C, Hayat A, Mishra R, Vasilescu A, del Valle M, Marty J-L (2015) A novel electrochemical aptamer–antibody sandwich assay for lysozyme detection. Analyst 140:4148–4153. CrossRefGoogle Scholar
  9. 9.
    Han B, Zhao C, Yin J, Wang H (2012) High performance aptamer affinity chromatography for single-step selective extraction and screening of basic protein lysozyme. J Chromatogr B Anal Technol Biomed Life Sci 903:112–117. CrossRefGoogle Scholar
  10. 10.
    X Wang YX, X Xu KH, Xiang M, Li L, F Liu NL (2010) Direct determination of urinary lysozyme using surface plasmon resonance light-scattering of gold nanoparticles. Talanta 82:693–697CrossRefGoogle Scholar
  11. 11.
    Deng B, Lin Y, Wang C, Li F, Wang Z, Zhang H, Li XF, le XC (2014) Aptamer binding assays for proteins: the thrombin example-a review. Anal Chim Acta 837:1–15. CrossRefGoogle Scholar
  12. 12.
    Kirby R, Cho EJ, Gehrke B, Bayer T, Sok Y, Neikirk DP et al (2004) Aptamer-based sensor arrays for the detection and quantitation of proteins aptamer-based sensor arrays for the detection and quantitation of proteins. Anal Chem 76:4066–4075. CrossRefGoogle Scholar
  13. 13.
    Ellington AD, Cox JC, Ellington AD (2004) Automated selection of aminoglycoside aptamers. J Lab Autom 9:150–154. CrossRefGoogle Scholar
  14. 14.
    Wang J, Liu B (2009) Fluorescence resonance energy transfer between an anionic conjugated polymer and a dye-labeled lysozyme aptamer for specific lysozyme detection. Chem Commun (17):2284–2286.
  15. 15.
    Chen C, Zhao J, Jiang J, Yu R (2012) A novel exonuclease III-aided amplification assay for lysozyme based on graphene oxide platform. Talanta 101:357–361. CrossRefGoogle Scholar
  16. 16.
    Wu J, Hou Y, Wang P, Wang Z, Li Y, Wang S, Yang M (2016) Detection of lysozyme with aptasensor based on fluorescence resonance energy transfer from carbon dots to graphene oxide. Luminescence 31:1207–1212. CrossRefGoogle Scholar
  17. 17.
    Wang Y, Pu KY, Liu B (2010) Anionic conjugated polymer with aptamer-functionalized silica nanoparticle for label-free naked-eye detection of lysozyme in protein mixtures. Langmuir 26:10025–10030. CrossRefGoogle Scholar
  18. 18.
    Ren R, Yu Z, Zou Y, Zhang S (2012) Enhancing the sensitivity of aptameric detection of lysozyme with a “feed-forward” network of DNA-related reaction cycles. Chem Eur J 18:14201–14209. CrossRefGoogle Scholar
  19. 19.
    Rodríguez MC, Rivas GA (2009) Label-free electrochemical aptasensor for the detection of lysozyme. Talanta 78:212–216. CrossRefGoogle Scholar
  20. 20.
    Xia Y, Gan S, Xu Q, Qiu X, Gao P, Huang S (2013) A three-way junction aptasensor for lysozyme detection. Biosensors and Bioelectronics. Elsevier 39:250–254. CrossRefGoogle Scholar
  21. 21.
    Rohrbach F, Karadeniz H, Erdem A, Famulok M, Mayer G (2012) Label-free impedimetric aptasensor for lysozyme detection based on carbon nanotube-modified screen-printed electrodes. Anal Biochem 421:454–459. CrossRefGoogle Scholar
  22. 22.
    Subramanian P, Lesniewski A, Kaminska I, Vlandas A, Vasilescu A, Niedziolka-Jonsson J et al (2013) Lysozyme detection on aptamer functionalized graphene-coated SPR interfaces. Biosens Bioelectron. Elsevier 50:239–243.
  23. 23.
    Su J, Zhou W, Xiang Y, Yuan R, Chai Y (2013) Target-induced charge reduction of aptamers for visual detection of lysozyme based on positively charged gold nanoparticles. Chem Commun 49:7659. CrossRefGoogle Scholar
  24. 24.
    Tohidi Moghadam T, Ranjbar B (2015) Heat induced aggregation of gold nanorods for rapid visual detection of lysozyme. Talanta 144:778–787. CrossRefGoogle Scholar
  25. 25.
    Fu R, Jeon K, Jung C, Park HG (2011) An ultrasensitive peroxidase DNAzyme-associated aptasensor that utilizes a target-triggered enzymatic signal amplification strategy. Chem Commun 47:9876–9878. CrossRefGoogle Scholar
  26. 26.
    Bamrungsap S, Shukoor MI, Sefah K, Tan WH (2011) Magnetic relaxation switches (MRSw’s) detection of lysozyme based on aptamer functionalized superparamagnetic nanoparticles. Abstr Pap Am Chem Soc 241:7795–7799Google Scholar
  27. 27.
    Ouyang X, Yu R, Jin J, Li J, Yang R, Tan W, Yuan J (2011) New strategy for label-free and time-resolved luminescent assay of protein: conjugate Eu3+ complex and aptamer-wrapped carbon nanotubes. Anal Chem 83:782–789. CrossRefGoogle Scholar
  28. 28.
    Hun X, Chen H, Wang W (2010) Design of ultrasensitive chemiluminescence detection of lysozyme in cancer cells based on nicking endonuclease signal amplification technology. Biosens Bioelectron 26:248–254. CrossRefGoogle Scholar
  29. 29.
    Li Y, Lei C, Zeng Y, Ji X, Zhang S (2012) Sensitive SERS detection of DNA and lysozyme based on polymerase assisted cross strand-displacement amplification. Chem Commun 48:10892–10894. CrossRefGoogle Scholar
  30. 30.
    Proteolysis L, Zhang X, Zhu S, Xiong Y, Deng C, Zhang X (2013) Development of a MALDI-TOF MS strategy for the high-throughput analysis of biomarkers : on-target aptamer immobilization and Angewandte. Angew Chem Int Ed Engl 52(23):6055–6058. CrossRefGoogle Scholar
  31. 31.
    He P, Zhang Y, Liu L, Qiao W, Zhang S (2013) Ultrasensitive SERS detection of lysozyme by a target-triggering multiple cycle amplification strategy based on a gold substrate. Chem Eur J 19:7452–7460. CrossRefGoogle Scholar
  32. 32.
    Yeh HC, Sharma J, Han JJ, Martinez JS, Werner JH (2010) A DNA-silver nanocluster probe that fluoresces upon hybridization. Nano Lett 10:3106–3110. CrossRefGoogle Scholar
  33. 33.
    Chen J, Zhang X, Cai S, Wu D, Chen M, Wang S, Zhang J (2014) A fluorescent aptasensor based on DNA-scaffolded silver-nanocluster for ochratoxin A detection. Biosens Bioelectron 57:226–231. CrossRefGoogle Scholar
  34. 34.
    Hsu H-C, Ho M, Wang K, Hsu Y-F, Chang C (2015) DNA stabilized silver nanoclusters as the fluorescent probe for studying the structural fluctuations and the solvation dynamics of human telomeric DNA. New J Chem 39:2140–2145. CrossRefGoogle Scholar
  35. 35.
    Petty JT, Sengupta B, Story SP, Degtyareva NN (2011) DNA sensing by amplifying the number of near-infrared emitting, oligonucleotide-encapsulated silver clusters. Anal Chem 83:5957–5964. CrossRefGoogle Scholar
  36. 36.
    Li J, Zhong X, Cheng F, Zhang JR, Jiang LP, Zhu JJ (2012) One-pot synthesis of aptamer-functionalized silver nanoclusters for cell-type-specific imaging. Anal Chem 84:4140–4146. CrossRefGoogle Scholar
  37. 37.
    Shah P, Rørvig-Lund A, Ben CS, Thulstrup PW, Kjaergaard HG, Fron E et al (2012) Design aspects of bright red emissive silver nanoclusters/DNA probes for microRNA detection. ACS Nano Am Chem Soc 6:8803–8814. CrossRefGoogle Scholar
  38. 38.
    Yang SW, Vosch T (2011) Rapid detection of microRNA by a silver nanocluster DNA probe. Anal Chem 83:6935–6939. CrossRefGoogle Scholar
  39. 39.
    Shah P, Thulstrup PW, Cho K, Bjerrum J (2014) DNA – RNA chimera indicates the flexibility of the backbone influences the encapsulation of fluorescent AgNC emitters. Chem Commun 50:13592–13595. CrossRefGoogle Scholar
  40. 40.
    Shah P, Choi SW, Kim HJ, Cho SK, Bhang YJ, Ryu MY, Thulstrup PW, Bjerrum MJ, Yang SW (2015) Locking-to-unlocking system is an efficient strategy to design DNA/silver nanoclusters (AgNCs) probe for human miRNAs. Nucleic Acids Res 44:1–11. Google Scholar
  41. 41.
    Lan G-Y, Huang C-C, Chang H-T (2010) Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions. Chem Commun (Camb) 46:1257–1259. CrossRefGoogle Scholar
  42. 42.
    Chen W-Y, Lan G-Y, Chang H-T (2011) Use of fluorescent DNA-templated gold/silver nanoclusters for the detection of sulfide ions. Analytical chemistry. Am Chem Soc;83: 9450–9455. doi:
  43. 43.
    Huang CC, Yang Z, Lee KH, Chang HT (2007) Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew Chem Int Ed 46:6824–6828. CrossRefGoogle Scholar
  44. 44.
    Adhikari B, Banerjee A (2010) Facile synthesis of water-soluble fluorescent silver nanoclusters and HgII sensing. Chem Mater 22:4364–4371. CrossRefGoogle Scholar
  45. 45.
    Shang L, Dong S (2008) Silver nanocluster-based fluorescent sensors for sensitive detection of Cu(ii). J Mater Chem 18:4636. CrossRefGoogle Scholar
  46. 46.
    Guo W, Yuan J, Wang E (2009) Oligonucleotide-stabilized Ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the Hg2+ ion. Chem Commun 3395–3397.
  47. 47.
    Guo W, Yuan J, Dong Q, Wang E (2010) Highly sequence-dependent formation of fluorescent silver nanoclusters in hybridized DNA duplexes for single nucleotide mutation identification. J Am Chem Soc 132:932–934. CrossRefGoogle Scholar
  48. 48.
    Park J, Lee J, Ban C, Kim WJ (2013) An approach toward SNP detection by modulating the fluorescence of DNA-templated silver nanoclusters. Biosens Bioelectron 43:419–424. CrossRefGoogle Scholar
  49. 49.
    Dou Y, Yang X (2013) Novel high-sensitive fluorescent detection of deoxyribonuclease I based on DNA-templated gold/silver nanoclusters. Anal Chim Acta 784:53–58. CrossRefGoogle Scholar
  50. 50.
    Lan G-Y, Chen W-Y, Chang H-T (2011) Characterization and application to the detection of single-stranded DNA binding protein of fluorescent DNA-templated copper/silver nanoclusters. Analyst 136:3623–3628. CrossRefGoogle Scholar
  51. 51.
    Wei Y, Liu R, Sun Z, Wang Y, Cui Y, Zhao Y, Cai Z, Gao X (2013) Luminescent silver nanoclusters anchored by oligonucleotides detect human telomerase ribonucleic acid template. Analyst 138:1338–1341. CrossRefGoogle Scholar
  52. 52.
    Zhao T-T, Chen Q-Y, Zeng C, Lan Y-Q, Cai J-G, Liu J, Gao J (2013) Multi-DNA–Ag nanoclusters: reassembly mechanism and sensing the change of HIF in cells. J Mater Chem B 1:4678. CrossRefGoogle Scholar
  53. 53.
    Zhang M, Guo S-M, Li Y-R, Zuo P, Ye B-C (2012) A label-free fluorescent molecular beacon based on DNA-templated silver nanoclusters for detection of adenosine and adenosine deaminase. Chem Commun 48:5488–5490. CrossRefGoogle Scholar
  54. 54.
    Li J, Zhong X, Zhang H, Le XC, Zhu JJ (2012) Binding-induced fluorescence turn-on assay using aptamer-functionalized silver nanocluster DNA probes. Anal Chem 84:5170–5174. CrossRefGoogle Scholar
  55. 55.
    Sharma J, Yeh H-C, Yoo H, Werner JH, Martinez JS (2011) Silver nanocluster aptamers: in situ generation of intrinsically fluorescent recognition ligands for protein detection. Chem Commun 47:2294–2296. CrossRefGoogle Scholar
  56. 56.
    Liu JJ, Song XR, Wang YW, Zheng AX, Chen GN, Yang HH (2012) Label-free and fluorescence turn-on aptasensor for protein detection via target-induced silver nanoclusters formation. Anal Chim Acta 749:70–74. CrossRefGoogle Scholar
  57. 57.
    Potty ASR, Kourentzi K, Fang H, Schuck P, Willson RC (2011) Biophysical characterization of DNA and RNA aptamer interactions with hen egg lysozyme. Int J Biol Macromol 48:392–397. CrossRefGoogle Scholar
  58. 58.
    Sharma J, Rocha RC, Phipps ML, Yeh H-C, Balatsky KA, Vu DM, Shreve AP, Werner JH, Martinez JS (2012) A DNA-templated fluorescent silver nanocluster with enhanced stability. Nanoscale 4:4107. CrossRefGoogle Scholar
  59. 59.
    Renc D, Vorlı M (2009) Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res 37:1713–1725.
  60. 60.
    Sengupta B, Springer K, Buckman JG, Story SP, Abe OH, Hasan ZW et al (2009) DNA templates for fluorescent silver clusters and I-motif folding. J Phys Chem C 113:19518–19524CrossRefGoogle Scholar
  61. 61.
    Day HA, Huguin C, Waller AE (2013) Silver cations fold i-motif at neutral pH. Chem Commun 49(70):7696–7698. CrossRefGoogle Scholar
  62. 62.
    Ritchie CM, Johnsen KR, Kiser JR, Antoku Y, Dickson RM, Petty JT (2007) Ag nanocluster formation using a cytosine oligonucleotide template. J Phys Chem C Nanomater Interfaces 111:175–181CrossRefGoogle Scholar
  63. 63.
    Wilcoxon JP, Provencio PP (2004) Heterogeneous growth of metal clusters solutions of seed nanoparticles. J Am Chem Soc 126:6402–6408. CrossRefGoogle Scholar
  64. 64.
    Huang H, Zhang Q, Luo J, Zhao Y (2012) Sensitive colorimetric detection of lysozyme in human serum using peptide-capped gold nanoparticles. Anal Methods 4:3874. CrossRefGoogle Scholar
  65. 65.
    Chen Z, Li L, Zhao H, Guo L, Mu X (2011) Electrochemical impedance spectroscopy detection of lysozyme based on electrodeposited gold nanoparticles. Talanta 83:1501–1506. CrossRefGoogle Scholar
  66. 66.
    Li LD, Chen ZB, Zhao HT, Guo L, Mu X (2010) An aptamer-based biosensor for the detection of lysozyme with gold nanoparticles amplification. Sensors Actuators B Chem 149:110–115. CrossRefGoogle Scholar
  67. 67.
    Erdem A, Eksin E, Muti M (2014) Chitosan-graphene oxide based aptasensor for the impedimetric detection of lysozyme. Colloids Surf B Biointerfaces 115:205–211. CrossRefGoogle Scholar
  68. 68.
    Immundiagnostik AG (2018) Lysozyme ELISA For the in vitro determination of lysozyme in serum, urine and liquor. Accessed 27 May 2019
  69. 69.
    Iv T, Oiv-oeno R (2015) Determination of lysozyme in wine using high-performance liquid chromatography J Enol Vitic 53:154-157. 1–11Google Scholar
  70. 70.
    Liao YH, Brown MB, Martin GP (2001) Turbidimetric and HPLC assays for the determination of formulated lysozyme activity. J Pharm Pharmacol 53:549–554. CrossRefGoogle Scholar
  71. 71.
    Lin HY, Ho MS, Lee MH (2009) Instant formation of molecularly imprinted e(ethylene-co-vinyl alcohol)/quantum dot composite nanoparticles and their use in one-pot urinalysis. Biosens Bioelectron 25:579–586. CrossRefGoogle Scholar
  72. 72.
    Moutsopoulos HM, Karsh J, Wolf RO, Tarpley TM, Tylenda A, Papadopoulos NM (1980) Lysozyme determination in parotid saliva from patients with Sjogren’s syndrome. Am J Med 69:39–42. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Nanobiotechnology, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
  2. 2.Department of ChemistryUniversity of CopenhagenCopenhagenDenmark
  3. 3.Department of Biophysics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran

Personalised recommendations