, Volume 14, Issue 6, pp 1577–1586 | Cite as

Optimization Design of a Multi-slot Nanoantenna Based on Genetic Algorithm for Energy Harvesting

  • Yuanyuan Liu
  • Kangkang Li
  • Sainan Cao
  • Guang Xiong
  • Lu ZhuEmail author


A new genetic algorithm (GA)-based multi-slot nanoantenna is proposed for energy harvesting, which consists of two element nanoantennas with rectangular shape and with double bowtie double ring (DBDR) slot. The DBDR slot structure can enhance the electric field to increase the absorptivity of nanoantennas; however, the larger parameter space of multi-slot is more hardly controlled. Therefore, we use GA to optimize the parameters of the DBDR slot nanoantenna and the Finite-Difference Time-Domain method to calculate the absorptivity. It is found that absorptivity of the optimized nanoantenna is over 77% in 400–1800 nm waveband. We attribute the better absorbing property of the nanoantenna to the synergistic effect of the localized surface plasmon resonance enhancement and coupling between slots.


Surface plasmons Absorption Subwavelength structures Nanostructures Solar energy 


Funding Information

The work was supported by the National Nature Science Foundation of China (61162015, 31101081) and Natural Science Foundation of Jiangxi Province (20171BAB204022) and Outstanding Youth Talent Project of Jiangxi Provincial (20171BCB23062) and Key Project of Science and Technology Research of Jiangxi Education Department (GJJ170360).


  1. 1.
    Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sensors Actuators B Chem 54(1–2):3–15Google Scholar
  2. 2.
    Willets KA, Duyne RPV (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58(1):267–297PubMedGoogle Scholar
  3. 3.
    Sherry LJ, Jin R, Mirkin CA, Schatz GC, Van Duyne RP (2006) Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett 6(9):2060–2065PubMedGoogle Scholar
  4. 4.
    Nicoletti O, Wubs M, Mortensen NA, Sigle W, van Aken PA (2011) Surface plasmon modes of a single silver nanorod: an electron energy loss study. Opt Express 19(16):15371–15379PubMedGoogle Scholar
  5. 5.
    El-Toukhy YM, Hussein M, Hameed MF, Heikal AM, Abd-Elrazzak MM (2016) Optimized tapered dipole nanoantenna as efficient energy harvester. Opt Express 24(14):A1107–A 1122PubMedGoogle Scholar
  6. 6.
    Ma Z, Vandenbosch GAE (2013) Optimal solar energy harvesting efficiency of nano-rectenna systems. Sol Energy 88(1):163–174Google Scholar
  7. 7.
    Briones E, Briones J, Cuadrado A, Martinezanton JC, Mcmurtry S (2014) Seebeck nanoantennas for solar energy harvesting. Appl Phys Lett 105(9):093108–093108-4Google Scholar
  8. 8.
    Chau YF, Chao CT, Lim CM, Huang HJ (2018) Depolying tunable metal-shell/dielectric core nanorod arrays as the virtually perfect absorber in the near-infrared regime. ACS Omega 3(7):7508–7516PubMedPubMedCentralGoogle Scholar
  9. 9.
    Maltzahn GV, Park JH, Agrawal A, Bandaru NK, Das SK (2009) Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res 69(9):3892–3900PubMedCentralGoogle Scholar
  10. 10.
    Zarrabi FB, Naser-Moghadasi M, Heydari S, Maleki M, Arezomand AS (2016) Cross-slot nanoantenna with graphene coat for bio-sensing application. Opt Commun 371:34–39Google Scholar
  11. 11.
    Dipalo M, Messina GC, Amin H, La RR, Shalabaeva V (2015) 3D plasmonic nanoantennas integrated with MEA biosensors. Nanoscale 7(8):3703–3711PubMedGoogle Scholar
  12. 12.
    Schumacher T, Kai K, Molnar D, Hentschel M, Giessen H (2011) Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle. Nat Commun 2(1):333PubMedCentralGoogle Scholar
  13. 13.
    Nia BA, Yousefi L, Shahabadi M (2016) Integrated optical-phased array nanoantenna system using a plasmonic Rotman lens. J Lightwave Technol 34(9):2118–2126Google Scholar
  14. 14.
    Lin J, Wu S, Li X, Huang C, Luo X (2013) Design and numerical analyses of ultrathin plasmonic lens for subwavelength focusing by phase discontinuities of nanoantenna arrays. Appl Phys Express 6(2):263–270Google Scholar
  15. 15.
    Zhang BX, Chen SF, Fu L, Zou ZF, Meng YB (2012) A temperature-controlled tunable plasmonic dual-band absorber. Acta Opt Sin 32(7):0723005-1–0723005-6Google Scholar
  16. 16.
    Casadei A, Pecora EF, Trevino J, Forestiere C (2014) Photonic-plasmonic coupling of GaAs single nanowires to optical nanoantennas. Nano Lett 14(5):2271–2278PubMedGoogle Scholar
  17. 17.
    El-Toukhy YM, Hussein M, Hameed MFO, Obayya SSA (2017) Characterization of asymmetric tapered dipole nanoantenna for energy harvesting applications. Plasmonics 13(2):503–510Google Scholar
  18. 18.
    Hussein M, Areed NFF, Hameed MFO, Obayya SSA (2014) Design of flower-shaped dipole nanoantenna for energy harvesting. IET Optoelectron 8(4):167–173Google Scholar
  19. 19.
    Chau YF, Lin WH, Sung MJ, Jheng CY, Jheng SC, Tsai DP (2013) Numerical investigation of a castle-like contour plasmonic nanoantenna with operating wavelengths ranging in ultraviolet–visible, visible light, and infrared light. Plasmonics 8(2):755–761Google Scholar
  20. 20.
    Yang YY, Zhang YL, Zhao ZS, Duan XM (2012) Broad-bandwidth and ultrafast electromagnetic response of coupled bimetal nanoantennas in few-cycle laser applications. Acta Phys Sin 61(1):014207-1–014207-7Google Scholar
  21. 21.
    Lópeztejeira F, Paniaguadomínguez R, Rodríguezoliveros R, Sánchezgil JA (2012) Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna. New J Phys 14(1):023035Google Scholar
  22. 22.
    Langhammer C, Kasemo B, Zorić I (2007) Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios. J Chem Phys 126(19):194702PubMedGoogle Scholar
  23. 23.
    Yang W, Chau YF, Jheng SC (2013) Analysis of transmittance properties of surface plasmon modes on periodic solid/outline bowtie nanoantenna arrays. Phys Plasmas 20(6):064503Google Scholar
  24. 24.
    Chau YF, Chao CT, Rao JY, Chiang HP, Lim CM, Lim RC, Voo NY (2016) Tunable optical performances on a periodic array of plasmonic bowtie nanoantennas with hollow cavities. Nanoscale Res Lett 11(1):411Google Scholar
  25. 25.
    Chau YF, Yeh HH, Tsai DP (2010) A new type of optical antenna: plasmonics nanoshell bowtie antenna with dielectric hole. Journal of Electromagnetic Waves and Applications 24(11–12):1621–1632. Google Scholar
  26. 26.
    Hu CC, Yang W, Tsai YT, Chau YF (2014) Gap enhancement and transmittance spectra of a periodic bowtie nanoantenna array buried in a silica substrate. Opt Commun 324:227–233Google Scholar
  27. 27.
    Chekini A, Sheikhaei S, Neshat M (2016)A novel plasmonic nanoantenna structure for solar energy harvesting. Fourth International Conference on Millimeter-Wave and Terahertz Technologies (MMWaTT), Tehran pp 20–24.
  28. 28.
    Zhang J, Zhang W, Zhu X, Zhu X, Yang J, Xu J (2012) Resonant slot nanoantennas for surface plasmon radiation in optical frequency range. Appl Phys Lett 100(24):438Google Scholar
  29. 29.
    Zhu L, Wang Y, Liu YY, Huang ZQ (2016) Design of slot Yagi-Uda nanoantennas and their broadband absorptivity properties. Acta Photonica Sin 45(10):138–145Google Scholar
  30. 30.
    Eltresy NA, Malhat HA, Zainud-Deen SH, Awadalla KH (2016) Dual-polarized nanoantenna solar energy collector. 2016 33rd National Radio Science Conference (NRSC), Aswan, pp 390–397.
  31. 31.
    KIK PG, Brongersma ML (2007) Surface plasmon nanophotonics. In: Brongersma M.L., Kik P.G. (eds) Surface Plasmon Nanophotonics. Springer Series in Optical Sciences, vol 131. Springer, Dordrecht.
  32. 32.
    Feichtner T, Selig O, Hecht B (2017) Plasmonic nanoantenna design and fabrication based on evolutionary optimization. Opt Express 25(10):10828–10842PubMedGoogle Scholar
  33. 33.
    Feichtner T, Selig O, Hecht B (2015) Plasmonic nanoantenna design and fabrication based on evolutionary optimization. Physics 15(2):10828Google Scholar
  34. 34.
    Haghtalab M, Faraji-Dana R, Safavi-Naeini S (2016) Design and analysis of disordered optical nanoantenna structures. J Lightwave Technol 34(11):2838–2847Google Scholar
  35. 35.
    Liu Y, Xiong G, Zhu L, Yue C (2017) Design of double bowtie ring shaped slot nano-antenna and their absorption properties. 2017 Progress in Electromagnetics Research Symposium-Fall. Piers-Fall, Singapore, pp 2571–2577Google Scholar
  36. 36.
    Galante M (1996) Genetic algorithms as an approach to optimize real-world trusses. Int J Numer Methods Eng 39(3):361–382Google Scholar
  37. 37.
    Menchaca-Mendez A, Coello CAC (2016) Selection mechanisms based on the maximin fitness function to solve multi-objective optimization problems. Inf Sci 332(C):131–152Google Scholar
  38. 38.
    Zhang L, Chang H, Xu R (2013) Equal-Width Partitioning Roulette Wheel Selection in Genetic Algorithm. 2012 Conference on Technologies and Applications of Artificial Intelligence, Tainan, pp. 62–67.
  39. 39.
    Poli R (2001) Exact schema theory for genetic programming and variable-length genetic algorithms with one-point crossover. Genet Program Evolvable Mach 2(2):123–163Google Scholar
  40. 40.
    Chellapilla K (2002) Combining mutation operators in evolutionary programming. IEEE Trans Evol Comput 2(3):91–96Google Scholar
  41. 41.
    El-Toukhy YM, Hameed MFO, Hussein M, Obayya SSA (2017) Tapered plasmonic nanoantennas for energy harvesting applications. Google Scholar
  42. 42.
    Mohammadi A, Sandoghdar V, Agio M (2009) Gold, copper, silver and aluminum nanoantennas to enhance spontaneous emission. J Comput Theor Nanosci 6(9):2024–2030Google Scholar
  43. 43.
    Yong-Qian LI, Guo YJ, Lei SU, Wang BB, Zhu ZY (2014) Polarization-dependent absorption of rectangular-block metamaterials in infrared region. Opt Precis Eng 22(11):2998–3003Google Scholar
  44. 44.
    Rajbala S, Srivastava A, Pandey HO, Kumar VD (2012) Investigation of a cross-slot nanoantenna and extraordinary transmission. Iet Micro Nano Lett 7(7):600–603Google Scholar
  45. 45.
    Chau YF, Wang CK, Shen L, Lim CM, Chiang HP, Chao CT, Huang HJ, Lin CT, Kumara NTRN, Voo NY (2017) Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays. Sci Rep 7(1):16817. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Chau YF (2009) Surface plasmon effects excited by the dielectric hole in a silver-shell nanospherical pair. Plasmonics 4(4):253–259Google Scholar
  47. 47.
    Chau YF, Jiang JC, Chao CT, Chiang HP, Lim CM (2016) Manipulating near field enhancement and optical spectrum in a pair-array of the cavity resonance based plasmonic nanoantennas. J Phys D Appl Phys 49(47):475102Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yuanyuan Liu
    • 1
  • Kangkang Li
    • 1
  • Sainan Cao
    • 1
  • Guang Xiong
    • 1
  • Lu Zhu
    • 1
    Email author
  1. 1.School of Information EngineeringEast China Jiaotong UniversityNanchangChina

Personalised recommendations