pp 1–8 | Cite as

Optimizing the Sensing Performance of SiO2-Au Nanoshells

  • Sajid Farooq
  • Diego RativaEmail author
  • Renato E. de Araujo


The localized surface plasmon resonance (LSPR) extinction spectrum and its dependence with permittivity of the surrounding medium have been broadly explored for molecular sensing applications. The sensing performance is governed by the bulk sensitivity and the linewidth of the LSPR peak. Therefore, a sensor needs to attend both requisites: a high bulk sensitivity and a sharp LSPR spectrum, related by the ηb ×FoM parameter. Complex plasmonic structures are proposed for sensing applications due to their high sensitivity values without considering the broad nature of the LSPR peak, that decrease the detection limit of the plasmonic sensor. In this article, we report the optical properties of SiO2 core/Au nanoshell (Au-NS) particles and the feasibility of exploring it as a sensor platform. On tuning the geometric parameters of the Au-NS, we have obtained the optimized the ηb ×FoM parameter with a value of 2057.4 nm/RIU2, which is the highest reported in the literature with spherical shapes. Moreover, for molecular adsorption sensing, Campbell’s model was exploited on a size-dependence approach. Finally, we have studied the influence of a dielectric substrate on the Au-NS sensing performance. Our results provide new bases for the development of high-performance nanostructures for bulk and molecular LSPR sensing.


Gold nano-shell Plasmonics sensor 



The authors are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the National Institute of Science and Technology of Photonics (INCT de Fotônica), and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial supports.


  1. 1.
    Bukasov R, Shumaker-Parry JS (2007) Highly tunable infrared extinction properties of gold nanocrescents. Nano Lett 7(5):1113–1118CrossRefGoogle Scholar
  2. 2.
    Burgin J, Liu M, Guyot-Sionnest P (2008) Dielectric sensing with deposited gold bipyramids. J Phys Chem C 112(49):19,279–19,282CrossRefGoogle Scholar
  3. 3.
    Chen H, Kou X, Yang Z, Ni W, Wang J (2008) Shape-and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24(10):5233–5237CrossRefGoogle Scholar
  4. 4.
    Farooq S, Neves WW, Pandoli O, Del Rosso T, de Lima LM, Dutra RF, de Araujo RE (2018) Engineering a plasmonic sensing platform for italic candida albicans/italic antigen identification. J Nanophotonics 12(3):033,003CrossRefGoogle Scholar
  5. 5.
    Haes AJ, Hall WP, Chang L, Klein WL, Van Duyne RP (2004) A localized surface plasmon resonance biosensor: first steps toward an assay for alzheimer’s disease. Nano Lett 4(6):1029–1034CrossRefGoogle Scholar
  6. 6.
    Jain PK, El-Sayed MA (2007) Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells. J Phys Chem C 111(47):17,451–17,454CrossRefGoogle Scholar
  7. 7.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370CrossRefGoogle Scholar
  8. 8.
    Jung LS, Campbell CT, Chinowsky TM, Mar MN, Yee SS (1998) Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 14(19):5636–5648CrossRefGoogle Scholar
  9. 9.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environmentGoogle Scholar
  10. 10.
    Khalavka Y, Becker J, Sonnichsen C (2009) Synthesis of rod-shaped gold nanorattles with improved plasmon sensitivity and catalytic activity. J Am Chem Soc 131(5):1871–1875CrossRefGoogle Scholar
  11. 11.
    Khlebtsov B, Dykman L, Bogatyrev V, Zharov V, Khlebtsov N (2007) A solid-phase dot assay using silica/gold nanoshells. Nanoscale Res Lett 2(1):6CrossRefGoogle Scholar
  12. 12.
    Lee J, Hasan W, Odom TW (2009) Tuning the thickness and orientation of single au pyramids for improved refractive index sensitivities. J Phys Chem C 113(6):2205–2207CrossRefGoogle Scholar
  13. 13.
    Loo C, Lin A, Hirsch L, Lee MH, Barton J, Halas N, West J, Drezek R (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 3(1):33–40CrossRefGoogle Scholar
  14. 14.
    Martinsson E, Otte MA, Shahjamali MM, Sepulveda B, Aili D (2014) Substrate effect on the refractive index sensitivity of silver nanoparticles. J Phys Chem C 118(42):24,680–24,687CrossRefGoogle Scholar
  15. 15.
    Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111(6):3828–3857CrossRefGoogle Scholar
  16. 16.
    Mayer KM, Lee S, Liao H, Rostro BC, Fuentes A, Scully PT, Nehl CL, Hafner JH (2008) A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods. ACS nano 2(4):687–692CrossRefGoogle Scholar
  17. 17.
    Mock JJ, Smith DR, Schultz S (2003) Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett 3(4):485–491CrossRefGoogle Scholar
  18. 18.
    Murray WA, Auguié B, Barnes WL (2009) Sensitivity of localized surface plasmon resonances to bulk and local changes in the optical environment. J Phys Chem C 113(13):5120–5125CrossRefGoogle Scholar
  19. 19.
    Nehl CL, Liao H, Hafner JH (2006) Optical properties of star-shaped gold nanoparticles. Nano letters 6(4):683–688CrossRefGoogle Scholar
  20. 20.
    Palonpon AF, Ando J, Yamakoshi H, Dodo K, Sodeoka M, Kawata S, Fujita K (2013) Raman and sers microscopy for molecular imaging of live cells. Nat Protoc 8(4):677CrossRefGoogle Scholar
  21. 21.
    Petryayeva E, Krull UJ (2011) Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Analytica chimica acta 706(1):8–24CrossRefGoogle Scholar
  22. 22.
    Ribeiro MS, de Melo LS, Farooq S, Baptista A, Kato IT, Núñez SC, de Araujo RE (2018) Photodynamic inactivation assisted by localized surface plasmon resonance of silver nanoparticles: in vitro evaluation on escherichia coli and streptococcus mutans. Photodiagn Photodyn Ther 22:191–196CrossRefGoogle Scholar
  23. 23.
    Sekhon JS, Verma S (2011) Refractive index sensitivity analysis of Ag, Au, and Cu nanoparticles. Plasmonics 6(2):311–317CrossRefGoogle Scholar
  24. 24.
    Sherry LJ, Chang SH, Schatz GC, Van Duyne RP, Wiley BJ, Xia Y (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano letters 5(10):2034–2038CrossRefGoogle Scholar
  25. 25.
    Takei H, Bessho N, Ishii A, Okamoto T, Beyer A, Vieker H, Gölzhäuser A (2014) Enhanced infrared lspr sensitivity of cap-shaped gold nanoparticles coupled to a metallic film. Langmuir 30(8):2297–2305CrossRefGoogle Scholar
  26. 26.
    Tam F, Moran C, Halas N (2004) Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment. J Phys Chem B 108(45):17,290–17,294CrossRefGoogle Scholar
  27. 27.
    Weissleder R (2001) A clearer vision for in vivo imagingGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Technological InnovationUniversity of PernambucoRecifeBrazil
  2. 2.Laboratory of Biomedical Optics and ImagingFederal University of PernambucoRecifeBrazil
  3. 3.Polytechnic School of PernambucoUniversity of PernambucoRecifeBrazil
  4. 4.Applied Physics ProgramFederal Rural University of PernambucoRecifeBrazil

Personalised recommendations