Advertisement

Plasmonics

, Volume 14, Issue 6, pp 1611–1619 | Cite as

Sensitivity Analysis of Gold Nanorod Biosensors for Single Molecule Detection

  • Zunaid Omair
  • Muhammad Anisuzzaman TalukderEmail author
Article
  • 142 Downloads

Abstract

Single protein molecule detection is important for investigating molecular behavior and diagnosing diseases at an early stage. Gold nanorod (GNR) biosensors have shown promise for label-free detection of single protein molecules. However, for widespread applications of GNR biosensors with high sensitivity, detail studies are needed to understand the effects of the sensing environment and the molecular binding dynamics on the sensitivity. In this work, a comprehensive theoretical analysis with variable substrate, buffer, ligand, and binding position of the target molecules shows that GNR biosensors are highly sensitive for single molecule detection of biological samples including critical pathogens such as cancer marker thyroglobulin and human immunodeficiency virus (HIV) marker glycoprotein. We also propose and show that a GNR biosensor with a dielectric cladding layer on the body increases the sensitivity by orders of magnitude compared to other state-of-the-art biosensors.

Keywords

Plasmonic nanobiosensor Single molecule detection LSPR SPP Biosensor Optical sensor Photonic sensor Optical sensing LSPR sensor 

Notes

References

  1. 1.
    Chowell D, Castillo-Chavez C, Krishna S, Qiu X, Andersonemail K (2015) Modelling the effect of early detection of Ebola. Lancet InfectDis 15:148–149CrossRefGoogle Scholar
  2. 2.
    Powers K, Ghani A, Miller W, Hoffman I, Pettifor A, Kamanga G, Martinson F, Cohen M (2011) The role of acute and early HIV infection in the spread of HIV and implications for transmission prevention strategies in Lilongwe, Malawi: a modelling study. Lancet 378:256–268CrossRefGoogle Scholar
  3. 3.
    Saving lives and averting costs? The case for earlier diagnosis just got stronger, (scienceblog.cancerresearchuk.org, 2017), http://scienceblog.cancerresearchuk.org/2014/09/22/saving-lives-and-averting-costs-the-case-for-earlier-diagnosis-just-got-stronger/
  4. 4.
  5. 5.
    Kall M (2012) Biosensors: one molecule at a time. Nat Nano 7:347–349CrossRefGoogle Scholar
  6. 6.
    Bergveld P (1970) Deveopment of an ion-sensitive solid-state device for neuro-physical measurements. IEEE Trans Biomed Eng 17:70–71CrossRefGoogle Scholar
  7. 7.
    Rocha-Santos TAP (2014) Sensors and biosensors based on magnetic nanoparticles. Trends Anal Chem 62:28–36CrossRefGoogle Scholar
  8. 8.
    Armani AM, Kulkarni RP, Fraser SE, Flagann RC, Vahala KJ (2007) Label-free, single-molecule detection with optical microcavities. Science 317:783–787CrossRefGoogle Scholar
  9. 9.
    Arnold S, Shopova SI, Holler S (2009) Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism. Opt Express 18:281–287CrossRefGoogle Scholar
  10. 10.
    Dentham VR, Holler S, Barbre C, Keng D, Kolchenko V, Arnold S (2013) Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity. Nano Lett 13:3347–3351CrossRefGoogle Scholar
  11. 11.
    Quan Q, Floyd DL, Burgess IB, Deotare PB, Frank IW, Tang SKY, Ilic R, Loncar M (2013) Single particle detection in CMOS compatible photonic crystal nanobeam cavities. Opt Express 21:32225–32233CrossRefGoogle Scholar
  12. 12.
    Mayer KM, Hao F, Lee S, Nordlander P, Hafner JH (2010) A single molecule immunoassay by localized surface plasmon resonance. Nanotechnology 21:255503CrossRefGoogle Scholar
  13. 13.
    Zijlstra P, Paulo PMR, Orrit M (2012) Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat Nano 7:379–382CrossRefGoogle Scholar
  14. 14.
    Ament I, Prasad J, Hankel A, Schmachtel S, Sönnichsen C (2012) Single unlabeled protein detection on individual plasmonic nanoparticles. Nat Nano 12:1092–1095Google Scholar
  15. 15.
    Stockman MI (2015) Nanoplasmonic sensing and detection. Science 348:287–288CrossRefGoogle Scholar
  16. 16.
    Hill RT (2015) Plasmonic biosensors, Wiley Interdiscip. Rev Nanomed Nanobiotechnol 7:152–168CrossRefGoogle Scholar
  17. 17.
    Biacore life sciences, (GE Healthcare, 2016), https://www.biacore.com/lifesciences/in-dex.html
  18. 18.
    Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116:6755–6759CrossRefGoogle Scholar
  19. 19.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Duyne RPV (2008) Biosensing with plasmonic nanosensors. Nat Mat 7:442–453CrossRefGoogle Scholar
  20. 20.
    Whitney AV, Elam JW, Zou S, Zinovev AV, Stair PC, Schatz GC, Duyne RPV (2005) Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition. J Phys Chem B 109:20522–20528CrossRefGoogle Scholar
  21. 21.
    Haes AJ, Zou S, Schatz GC, Duyne RPV (2003) A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B 108:109–116CrossRefGoogle Scholar
  22. 22.
    Beuwer MA, Prins MWJ, Zijlstra P (2015) Stochastic protein interactions monitored by hundreds of single-molecule plasmonic biosensors. Nano Lett 15:3507–3511CrossRefGoogle Scholar
  23. 23.
    Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Matter 15:1957–1962CrossRefGoogle Scholar
  24. 24.
    Bayer EA, Wilcheck M (2009) The use of avidin-biotin complex as a tool in molecular biology. In: Glick D (ed) Methods of Biochemical Analysis. Wiley, HobokenGoogle Scholar
  25. 25.
    Requirements for biological buffers, (Applichem, 2017), https://www.applichem.com/en/products/laboratory-biochemicals/biological-buffer/
  26. 26.
  27. 27.
    Gans R (1912) ÜBer die Form ultramikroskopischer Goldteilchen. Ann Phys 342:881–900CrossRefGoogle Scholar
  28. 28.
    Mie G (1908) Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann Phys 330:377–445CrossRefGoogle Scholar
  29. 29.
    Rysselberghe PV (1932) Remarks concerning the Clausius-Mossotti law. J Phys Chem 36:1152–1155CrossRefGoogle Scholar
  30. 30.
    Bohren CF, Huffman DR (2007) Absorption and Scattering of Light by Small Particles. Wiley Online Library, Chap. 5Google Scholar
  31. 31.
    Maier CA (2007) Plasmonics: Fundamentals and Applications. Springer, USA. Chap. 5CrossRefGoogle Scholar
  32. 32.
    Koya AN, Ji B, Hao Z, Lin J (2015) Resonance hybridization and near field properties of plasmonic ring dimer-rod nanosystem. J Appl Phys 118:113101CrossRefGoogle Scholar
  33. 33.
    Mackey MA, Ali MRK, Austin LA, Near RD, El-Sayed MA (2014) The most effective gold nanorod size for plasmonic photothermal therapy: theory and in vitro experiments. J Phys Chem B 118:1319–1326CrossRefGoogle Scholar
  34. 34.
    Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21:4880–4910CrossRefGoogle Scholar
  35. 35.
    Nilsson PO, Norris C, Wallden L (1969) Evidence for direct transitions from the d-band of gold. Solid State Commun 7:1705–1707CrossRefGoogle Scholar
  36. 36.
    Palik ED (1993) Handbook of Optical Constants of Solids. ElsevierGoogle Scholar
  37. 37.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B6:4370–4379CrossRefGoogle Scholar
  38. 38.
    Absorption per unit volume, (Lumerical knowledge base, 2016), https://kb.lumerical.com/en/layout_analysis_pabs.html
  39. 39.
    Kahnert FM (2003) Numerical methods in electromagnetic scattering theory. J Quant Spectros Radia Transfer 79–80:775–824CrossRefGoogle Scholar
  40. 40.
    Dieguez L, Mir M, Martinez E, Moreno M, Samitier J (2009) Effect of the refractive index of buffer solutions in evanescent optical biosensors. Sens Lett 7:851–855CrossRefGoogle Scholar
  41. 41.
    POPSO, (CAS database, 2017), http://www.chembk.com/en/cas
  42. 42.
    Su J, Goldberg AF, Stoltz BM (2016) Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators. Light Sci Appl 5:e16001CrossRefGoogle Scholar
  43. 43.
    Dantham VR, Holler S, Barbre C, Keng D, Kolchenko V, Arnold S (2013) Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity. Nano Lett 13:3347–3351CrossRefGoogle Scholar
  44. 44.
    Cullen DC, Brown RGW, Lowe CR (1987) Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings. Biosensors 3:211–225CrossRefGoogle Scholar
  45. 45.
    Envelope glycoprotein GP120, (Wikipedia, 2016),https://en.wikipedia.org/wiki/Envelope_glycoprotein_GP120

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Electrical and Electronic EngineeringBangladesh University of Engineering and TechnologyDhakaBangladesh
  3. 3.School of Electronic and Electrical EngineeringUniversity of LeedsLeedsUK

Personalised recommendations