Advertisement

Plasmonics

, Volume 14, Issue 6, pp 1473–1478 | Cite as

Tunable Reflection-Based Nanoimaging Using Electrical Control of Hyperbolic Polaritons

  • Yilun Lou
  • Lian ShenEmail author
  • Kuan W. A. CheeEmail author
Article
  • 89 Downloads

Abstract

We report on the design of a tunable reflection-based lenslet composed of a periodic metal-dielectric multilayer system of silver and 4-N, N-dimethylamino-4′-N′-methyl-stilbazolium tosylate (DAST) that is capable of resolving fine object details with subwavelength resolution of up to λ/9 in the near field. Total internal reflection is achieved on the lenslet edges, with electrical control of the hyperbolic polaritons allowing tunability over a wide spatial and spectral range. Here, we demonstrated imaging performed successfully with and without electrical biasing for three different wavelengths, of 603 nm, 659 nm, and 715 nm. We also demonstrated how the effective medium description may moderately overestimate near-field nanoimaging when accounting for the individual elements of the lenslet. Remarkably, this study introduces novel pathways to practically realize dynamically tunable broadband subdiffraction spectroscopic imaging or near-field lithography.

Keywords

Tunability Subwavelength imaging Hyperbolic metamaterials 

Notes

Funding Information

This work was sponsored by the Postdoctoral Science Foundation of China under Grant No. 2018M632462, National Natural Science Foundation of China under Grant No. 61650110517, and Natural Science Foundation of Ningbo under Grant No. 2017A610095, and the overseas talent program.

References

  1. 1.
    Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158CrossRefGoogle Scholar
  2. 2.
    Betzig E, Trautman JK, Harris TD, Weiner JS, Kostelak RL (1991) Breaking the diffraction barrier: optical microscopy on a nanometric scale. Science 251:1468–1470CrossRefGoogle Scholar
  3. 3.
    Betzig E, Trautman JK (1992) Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257:189–195CrossRefGoogle Scholar
  4. 4.
    Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Für Mikrosk Anat 9:413–418CrossRefGoogle Scholar
  5. 5.
    Dunn RC (1999) Near-field scanning optical microscopy. Chem Rev 99:2891–2928CrossRefGoogle Scholar
  6. 6.
    Lewis A, Taha H, Strinkovski A, Manevitch A, Khatchatouriants A, Dekhter R, Ammann E (2003) Near-field optics: from subwavelength illumination to nanometric shadowing. Nat Biotechnol 21:1378–1386CrossRefGoogle Scholar
  7. 7.
    Hartschuh A (2008) Tip-enhanced near-field optical microscopy. Angew Chem Int Ed 47:8178–8191CrossRefGoogle Scholar
  8. 8.
    Pohl DW, Denk W, Lanz M (1984) Optical stethoscopy: image recording with resolution λ/20. Appl Phys Lett 44:651–653CrossRefGoogle Scholar
  9. 9.
    Knoll B, Keilmann F (2000) Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy. Opt Commun 182:321–328CrossRefGoogle Scholar
  10. 10.
    Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966–3969CrossRefGoogle Scholar
  11. 11.
    Fang N, Lee H, Sun C, Zhang X (2005) Sub-diffraction-limited optical imaging with a silver superlens. Science 308:534–537CrossRefGoogle Scholar
  12. 12.
    Taubner T, Korobkin D, Urzhumov Y, Shvets G, Hillenbrand R (2006) Near-field microscopy through a SiC superlens. Science 313:1595CrossRefGoogle Scholar
  13. 13.
    Smith DR, Schurig D (2003) Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys Rev Lett 90:077405CrossRefGoogle Scholar
  14. 14.
    Maslovski S, Tretyakov S (2003) Phase conjugation and perfect lensing. J Appl Phys 94:4241–4243CrossRefGoogle Scholar
  15. 15.
    Pendry JB (2008) Time reversal and negative refraction. Science 322:71–73CrossRefGoogle Scholar
  16. 16.
    Notomi M (2000) Theory of light propagation in strongly modulated photonic crystals: refraction-like behavior in the vicinity of the photonic band gap. Phys Rev B 62:10696–10705CrossRefGoogle Scholar
  17. 17.
    Shen L, Lin X, Zhang R, Liu X, Lin S, Chen H (2015) Photonic transport in a graphene van der Waals homojunction. J Mater Chem C 3:10879–10885CrossRefGoogle Scholar
  18. 18.
    Shen L, Wang H, Li R, Xu Z, Chen H (2017) Hyperbolic-polaritons-enabled dark-field lens for sensitive detection. Sci Rep 7:6995CrossRefGoogle Scholar
  19. 19.
    Li P, Taubner T (2012) Multi-wavelength superlensing with layered phonon-resonant dielectrics. Opt Express 20:11787–11795CrossRefGoogle Scholar
  20. 20.
    Li P, Taubner T (2012) Broadband subwavelength imaging using a tunable graphene-lens. ACS Nano 6:10107–10114CrossRefGoogle Scholar
  21. 21.
    Forouzmand A, Bernety HM, Yakovlev AB (2015) Graphene-loaded wire medium for tunable broadband subwavelength imaging. Phys Rev B 92:085402CrossRefGoogle Scholar
  22. 22.
    Yang X, Liu Y, Ma J, Cui J, Xing H, Wang W, Wang C, Luo X (2008) Broadband super-resolution imaging by a superlens with unmatched dielectric medium. Opt Express 16:19686CrossRefGoogle Scholar
  23. 23.
    Pan F, Knöpfle G, Bosshard C, Follonier S, Spreiter R, Wong MS, Günter P (1996) Electro‐optic properties of the organic salt 4‐N,N‐dimethylamino‐4′‐N′‐methyl‐stilbazolium tosylate. Appl Phys Lett 69:13–15CrossRefGoogle Scholar
  24. 24.
    Li P, Lewin M, Kretinin AV, Caldwell JD, Novoselov KS, Taniguchi T, Watanabe K, Gaussmann F, Taubner T (2015) Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat Commun 6:7507CrossRefGoogle Scholar
  25. 25.
    Ishii S, Kildishev AV, Narimanov E, Shalaev VM, Drachev VP (2013) Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium. Laser Photonics Rev 7:265–271CrossRefGoogle Scholar
  26. 26.
    Shen L, Prokopeva LJ, Chen H, Kildishev AV (2017) Designing optimal nanofocusing with a gradient hyperlens. Nanophotonics 7:479CrossRefGoogle Scholar
  27. 27.
    Zhu JH, Huang XG, Mei X (2011) Plasmonic electro-optical switches operating at telecom wavelengths. Plasmonics 6:605–612CrossRefGoogle Scholar
  28. 28.
    Vicario C, Monoszlai B, Ardana-Lamas F, Hauri CP (2015) Filling the entire terahertz frequency gap by single-cycle MV/Cm pulses. In: Yamanouchi K, Cundiff S, de Vivie-Riedle R et al (eds) Ultrafast phenomena XIX. Springer International Publishing, Cham, pp 609–611CrossRefGoogle Scholar
  29. 29.
    Su D, Zhang X-Y, Ma Y-L, Shan F, Wu J-Y, Fu X-C, Zhang L-J, Yuan K-Q, Zhang T (2018) Real-time electro-optical tunable hyperlens under subwavelength scale. IEEE Photonics J 10(1).  https://doi.org/10.1109/jphot.2017.2781802 CrossRefGoogle Scholar
  30. 30.
    Rakić AD, Djurišic AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37:5271–5283CrossRefGoogle Scholar
  31. 31.
    Adams W, Sadatgol M, Güney DÖ (2016) Review of near-field optics and superlenses for sub-diffraction-limited nano-imaging. AIP Adv 6:100701CrossRefGoogle Scholar
  32. 32.
    Duncan C, Perret L, Palomba S, Lapine M, Kuhlmey BT, de Sterke CM (2015) New avenues for phase matching in nonlinear hyperbolic metamaterials. Sci Rep 5(8983)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Electromagnetics Academy at Zhejiang University, College of Information Science and Electronic EngineeringZhejiang UniversityHangzhouChina
  2. 2.Laser Research InstituteQilu University of Technology (Shandong Academy of Sciences)QingdaoChina
  3. 3.Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboChina
  4. 4.Centre for Advanced Photonics and Electronics, Electrical Engineering Division, Department of EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations