Advertisement

Plasmonics

, Volume 14, Issue 6, pp 1547–1554 | Cite as

Omnidirectional Surface Plasmon Polaritons Concentration in 3D Metallic Structures

  • Lei ZhengEmail author
  • Andrey Evlyukhin
  • Ludger Overmeyer
  • Carsten Reinhardt
Article
  • 187 Downloads

Abstract

3D metallic structures with symmetrically curved surfaces are proposed for surface plasmon polaritons (SPPs) deflection and concentration. Two-photon polymerization (2PP) and a sputtering process are applied for the preparation of the proposed structures. Leakage radiation microscopy (LRM) is used for the excitation and observation of SPPs. The characterization results reveal that the proposed structures are able to deflect SPPs and partly concentrate SPPs energy when the surface waves propagate around the raised part of the metallic structure. The maximum electromagnetic energy concentration can be reached when SPPs propagate towards the center of the raised part of the structure. An investigation on the energy concentration performance of the proposed metallic structures with respect to different profiles is analytically and experimentally carried out. Applications of plasmonic devices for energy harvesting elements, omnidirectional light absorbers, and benders are discussed.

Keywords

3D metallic structures Surface plasmon polaritons Energy concentrator Light bender Two-photon polymerization Plasmon leakage radiation 

Notes

Acknowledgements

The authors acknowledge the financial support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, Project ID RE3012/4-1 and RE3012/2-1). A.E. acknowledges the support from the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453).

References

  1. 1.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824PubMedPubMedCentralGoogle Scholar
  2. 2.
    Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors. Sens Actuators B: Chem 54 (1):3Google Scholar
  3. 3.
    Sepúlveda B, Calle A, Lechuga LM, Armelles G (2006) Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor. Opt Lett 31(8):1085PubMedGoogle Scholar
  4. 4.
    Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108(2):494PubMedGoogle Scholar
  5. 5.
    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10(7):2342PubMedGoogle Scholar
  6. 6.
    Ditlbacher H, Krenn J, Schider G, Leitner A, Aussenegg F (2002) Two-dimensional optics with surface plasmon polaritons. Appl Phys Lett 81(10):1762Google Scholar
  7. 7.
    Davoyan AR (2011) Plasmonic couplers with metal nonlinearities. Phys Lett A 375(14):1615Google Scholar
  8. 8.
    Lou F, Wang Z, Dai D, Thylen L, Wosinski L (2012) Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides. Appl Phys Lett 100(24):241105Google Scholar
  9. 9.
    Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189PubMedPubMedCentralGoogle Scholar
  10. 10.
    Oulton RF, Sorger VJ, Genov D, Pile D, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photon 2(8):496Google Scholar
  11. 11.
    Han Z, Elezzabi A, Van V (2010) Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform. Opt Lett 35(4):502PubMedGoogle Scholar
  12. 12.
    Pors A, Nielsen MG, Eriksen RL, Bozhevolnyi SI (2013) Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett 13(2):829PubMedGoogle Scholar
  13. 13.
    Ostfeld A, Pacifici D (2011) Plasmonic concentrators for enhanced light absorption in ultrathin film organic photovoltaics. Appl Phys Lett 98(11):113112Google Scholar
  14. 14.
    Shackleford JA, Grote R, Currie M, Spanier JE, Nabet B (2009) Integrated plasmonic lens photodetector. Appl Phys Lett 94(8):083501Google Scholar
  15. 15.
    Chalabi H, Schoen D, Brongersma ML (2014) Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett 14(3):1374PubMedGoogle Scholar
  16. 16.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205Google Scholar
  17. 17.
    Catchpole KR, Mokkapati S, Beck F, Wang EC, McKinley A, Basch A, Lee J (2011) Plasmonics and nanophotonics for photovoltaics. Mrs Bull 36(6):461Google Scholar
  18. 18.
    Knight MW, Wang Y, Urban AS, Sobhani A, Zheng B, Nordlander P, Halas NJ (2013) Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano Lett 13(4):1687PubMedGoogle Scholar
  19. 19.
    Dionne JA, Diest K, Sweatlock LA, Atwater HA (2009) PlasMOStor: a metal- oxide- Si field effect plasmonic modulator. Nano Lett 9(2):897PubMedGoogle Scholar
  20. 20.
    Krasavin A, Zayats A (2012) Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator. Phys Rev Lett 109(5):053901PubMedGoogle Scholar
  21. 21.
    Shi L, Iwan B, Nicolas R, Ripault Q, Andrade JR, Han S, Kim H, Boutu W, Franz D, Heidenblut T et al (2017) Self-optimization of plasmonic nanoantennas in strong femtosecond fields. Optica 4(9):1038Google Scholar
  22. 22.
    Shi L, Iwan B, Ripault Q, Andrade JR, Han S, Kim H, Boutu W, Franz D, Nicolas R, Heidenblut T et al (2018) Resonant-plasmon-assisted subwavelength ablation by a femtosecond oscillator. Phys Rev Appl 9(2):024001Google Scholar
  23. 23.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442PubMedPubMedCentralGoogle Scholar
  24. 24.
    Kabashin A, Evans P, Pastkovsky S, Hendren W, Wurtz G, Atkinson R, Pollard R, Podolskiy V, Zayats A (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8(11):867PubMedPubMedCentralGoogle Scholar
  25. 25.
    Lou F, Dai D, Wosinski L (2012) Ultracompact polarization beam splitter based on a dielectric–hybrid plasmonic–dielectric coupler. Opt Lett 37(16):3372PubMedGoogle Scholar
  26. 26.
    Guan X, Wu H, Shi Y, Wosinski L, Dai D (2013) Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire. Opt Lett 38(16):3005PubMedGoogle Scholar
  27. 27.
    Tan Q, Huang X, Zhou W, Yang K (2013) A plasmonic based ultracompact polarization beam splitter on silicon-on-insulator waveguides. Sci Rep 3:2206PubMedPubMedCentralGoogle Scholar
  28. 28.
    Zouhdi S, Sihvola A, Vinogradov AP (2008) Metamaterials and plasmonics: fundamentals, modelling, applications. Springer Science & Business MediaGoogle Scholar
  29. 29.
    Boltasseva A, Atwater HA (2011) Low-loss plasmonic metamaterials. Science 331(6015):290PubMedGoogle Scholar
  30. 30.
    Shao Z, Yang Y, Wang Z, Yahaya M, Zheng B, Dehdashti S, Wang H, Chen H (2017) Manipulating surface plasmon polaritons with infinitely anisotropic metamaterials. Opt Express 25(9):10515PubMedGoogle Scholar
  31. 31.
    Sheng C, Liu H, Zhu S, Genov D (2016) Omnidirectional optical attractor in structured gap-surface plasmon waveguide. Sci Rep 6:23514PubMedPubMedCentralGoogle Scholar
  32. 32.
    Kitson S, Barnes WL, Sambles J (1996) Full photonic band gap for surface modes in the visible. Phys Rev Lett 77(13):2670PubMedGoogle Scholar
  33. 33.
    Bozhevolnyi SI, Erland J, Leosson K, Skovgaard PM, Hvam JM (2001) Waveguiding in surface plasmon polariton band gap structures. Phys Rev Lett 86(14):3008PubMedGoogle Scholar
  34. 34.
    Radko IP, Evlyukhin AB, Boltasseva A, Bozhevolnyi SI (2008) Refracting surface plasmon polaritons with nanoparticle arrays. Opt Express 16(6):3924PubMedGoogle Scholar
  35. 35.
    Stockman MI (2004) Nanofocusing of optical energy in tapered plasmonic waveguides. Phys Rev Lett 93(13):137404PubMedGoogle Scholar
  36. 36.
    Choo H, Kim MK, Staffaroni M, Seok TJ, Bokor J, Cabrini S, Schuck PJ, Wu MC, Yablonovitch E (2012) Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper. Nat Photon 6(12):838Google Scholar
  37. 37.
    Bozhevolnyi SI, Nerkararyan KV (2010) Adiabatic nanofocusing of channel plasmon polaritons. Opt Lett 35(4):541PubMedGoogle Scholar
  38. 38.
    Vernon KC, Gramotnev DK, Pile DF (2007) Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate. J Appl Phys 101(10):104312Google Scholar
  39. 39.
    Verhagen E, Kuipers L, Polman A (2010) Plasmonic nanofocusing in a dielectric wedge. Nano Lett 10(9):3665PubMedGoogle Scholar
  40. 40.
    Ropers C, Neacsu C, Elsaesser T, Albrecht M, Raschke M, Lienau C (2007) Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett 7(9):2784PubMedGoogle Scholar
  41. 41.
    Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9(3):193PubMedGoogle Scholar
  42. 42.
    Prokopeva L, Kildishev A (2016) Expanding the theory of circular omnidirectional light concentrators to elliptic and spheroidal designs. J Opt 18(4):044014Google Scholar
  43. 43.
    Nerkararyan KV, Nerkararyan SK, Bozhevolnyi SI (2011) Plasmonic black-hole: broadband omnidirectional absorber of gap surface plasmons. Opt Lett 36(22):4311PubMedGoogle Scholar
  44. 44.
    Smolyaninov II, Hung YJ (2014) Big Crunch-based omnidirectional light concentrators. J Opt 16(12):125103Google Scholar
  45. 45.
    Narimanov EE, Kildishev AV (2009) Optical black hole: broadband omnidirectional light absorber. Appl Phys Lett 95(4):041106Google Scholar
  46. 46.
    Cheng Q, Cui TJ, Jiang WX, Cai BG (2010) An omnidirectional electromagnetic absorber made of metamaterials. New J Phys 12(6):063006Google Scholar
  47. 47.
    Sheng C, Liu H, Wang Y, Zhu S, Genov D (2013) Trapping light by mimicking gravitational lensing. Nat Photon 7(11):902Google Scholar
  48. 48.
    Smolyaninov II (2003) Surface plasmon toy model of a rotating black hole. New J Phys 5(1):147Google Scholar
  49. 49.
    Genov D (2011) General relativity: optical black-hole analogues. Nat Photon 5(2):76Google Scholar
  50. 50.
    Ostendorf A, Chichkov BN (2006) Two-photon polymerization: a new approach to micromachining. Photon Spectra 40(10):72Google Scholar
  51. 51.
    Birr T, Fischer T, Evlyukhin AB, Zywietz U, Chichkov BN, Reinhardt C (2017) Phase-resolved observation of the gouy phase shift of surface plasmon polaritons. ACS Photon 4(4):905Google Scholar
  52. 52.
    Drezet A, Hohenau A, Koller D, Stepanov A, Ditlbacher H, Steinberger B, Aussenegg F, Leitner A, Krenn J (2008) Leakage radiation microscopy of surface plasmon polaritons. Mater Sci Eng B 149 (3):220Google Scholar
  53. 53.
    Obata K, El-Tamer A, Koch L, Hinze U, Chichkov BN (2013) High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP). Light: Sci Appl 2(12):e116Google Scholar
  54. 54.
    Le Ru E, Etchegoin P (2008) Principles of surface-enhanced raman spectroscopy: and related plasmonic effects. Elsevier, AmsterdamGoogle Scholar
  55. 55.
    Yang HU, D’Archangel J, Sundheimer ML, Tucker E, Boreman GD, Raschke MB (2015) Optical dielectric function of silver. Phys Rev B 91(23):235137Google Scholar
  56. 56.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370Google Scholar
  57. 57.
    Palik ED (1998) Handbook of optical constants of solids, vol 3. Academic Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Nano and Quantum EngineeringLeibniz Universität HannoverHannoverGermany
  2. 2.Laser Zentrum Hannover e.V.HannoverGermany
  3. 3.Institute of Quantum OpticsLeibniz Universität HannoverHannoverGermany
  4. 4.Institute of Transport and Automation TechnologyLeibniz Universität HannoverGarbsenGermany
  5. 5.Hochschule BremenBremenGermany

Personalised recommendations