Advertisement

Plasmonics

pp 1–5 | Cite as

Optical Properties of Periodic Metallic Slits with Asymmetric Binary Grooves

  • Ling Guo
  • Jun MaEmail author
  • Shan Yin
  • Shouhong Chen
Article
  • 39 Downloads

Abstract

The structure of periodic metallic slits with asymmetric binary grooves is proposed to reduce the width of the transmission peak due to the similar Fabry-Perot (F-P) resonances. It is well known that the F-P resonance in a slit can enhance the transmission and performs as a peak in the spectrum. However, the groove F-P resonance appeared as a dip in the spectrum. In the proposed structure, by coupling the slit and the groove modes, the width of transmission peak can be reduced due to the two dips introduced by the asymmetric binary grooves. The proposed plasmonic structure is promising in application of improving the quality factor, sensing sensitivity, and narrow band filters.

Keywords

Surface plasmons Resonance Metamaterials 

Notes

Funding

The National Natural Science Foundation of China (Grant no. 61671008); Natural Science Foundation of Guangxi Province (Grant nos. 2018GXNSFBA281175, 2018GXNSFAA281163); Science and Technology Projects of Guangxi Province (Grant nos. AD18281033, AD18281041); Guangxi Key Laboratory of Automatic Detecting Technology and Instruments (Grant No. YQ17103); Guangxi Key Laboratory of Opto-electronic Information Processing (Grant no. GD18106).

References

  1. 1.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through subwavelength hole arrays. Nature 391:667CrossRefGoogle Scholar
  2. 2.
    Liu H, Lalanne P (2008) Microscopic theory of the extraordinary optical transmission. Nature 452 (7188):728–731CrossRefGoogle Scholar
  3. 3.
    Sun Z, Lin Q (2008) Study of a Fabry-Perot-like microcavity with sandwiched metallic gratings for tunable filter arrays. IEEE Photon Technol Lett 20(13–16):1157–1159CrossRefGoogle Scholar
  4. 4.
    Le Perchec J, de Lamaestre RE, Brun M, Rochat N, Gravrand O, Badano G, Hazart J, Nicoletti S (2011) High rejection bandpass optical filters based on sub-wavelength metal patch arrays. Optics Express 19 (17):15720–15731CrossRefGoogle Scholar
  5. 5.
    Sutinjo A, Okoniewski M (2012) A simple leaky-wave analysis of 1-d grooved metal structure for enhanced microwave radiation. IEEE Trans Antennas Propag 60(6):2719–2726CrossRefGoogle Scholar
  6. 6.
    Barbara A, Quemerais P, Bustarret E, Lopez-Rios T (2002) Optical transmission through subwavelength metallic gratings. Phys Rev B 66(16):161403CrossRefGoogle Scholar
  7. 7.
    Sun ZJ, Jung YS, Kim HK (2003) Role of surface plasmons in the optical interaction in metallic gratings with narrow slits. Appl Phys Lett 83(15):3021–3023CrossRefGoogle Scholar
  8. 8.
    Pacifici D, Lezec HJ, Atwater HA, Weiner J (2008) Quantitative determination of optical transmission through subwavelength slit arrays in ag films: role of surface wave interference and local coupling between adjacent slits. Phys Rev B 77(11):115411CrossRefGoogle Scholar
  9. 9.
    Sun Z, Zeng D (2008) Modeling optical transmission spectra of periodic narrow slit arrays in thick metal films and their correlation with those of individual slits. J Mod Opt 55(10):1639– 1647CrossRefGoogle Scholar
  10. 10.
    Liu B, Sun Z (2012) Plasmon resonances in deep nanogrooves of reflective metal gratings. Photon Nanostruct Fundam Appl 10(1):119–125CrossRefGoogle Scholar
  11. 11.
    Dhawan A, Canva M, Vo-Dinh T (2011) Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing. Opt Express 19(2):787–813CrossRefGoogle Scholar
  12. 12.
    Guo L, Sun Z (2015) Cooperative optical trapping in asymmetric plasmon nanocavity arrays. Opt Express 23(24):31324–31333CrossRefGoogle Scholar
  13. 13.
    Hugonin JP, Lalanne P (2006) Interaction between optical nano-objects at metallo-dielectric interfaces. Nat Phys 2(8):551–556CrossRefGoogle Scholar
  14. 14.
    Wang Y, Chen Y, Zhang Y, Liu S (2007) Transmission characters of the periodic metallic grating with grooves. J Optoelectron ⋅ Laser 18(8):938–941Google Scholar
  15. 15.
    Li ZB, Yang YH, Kong XT, Zhou WY, Tian JG (2009) Fabry-perot resonance in slit and grooves to enhance the transmission through a single subwavelength slit. J Opt A Pure Appl Opt 11:10500210Google Scholar
  16. 16.
    Na DY, Kim JH, Park YB, Jung KY (2014) Enhanced electromagnetic transmission through a slit surrounded by rectangular grooves. Int J Electron 101(2):174–181CrossRefGoogle Scholar
  17. 17.
    Yj Su, Hc Chang (2013) Multiple extraordinary optical transmission peaks via a single subwavelength slit surrounded by mixed-period grooves. IEEE Photon J 5(5):7902213CrossRefGoogle Scholar
  18. 18.
    Eftekharinia B, Moshaii A, Dabirian A (2017) Design of a slit-groove coupler for unidirectional excitation of the guided surface plasmon polaritons through a plasmonic slot waveguide. Plasmonics 12(1):131–138CrossRefGoogle Scholar
  19. 19.
    Li X, Zhao Z, Feng Q, Hu C, Wang C, Liu Y, Luo X (2011) Abnormal nearly homogeneous radiation by slit-grooves structure. Appl Phys B - Lasers Opt 102(4):851–855CrossRefGoogle Scholar
  20. 20.
    Dana B, Bahabad A (2016) Double fano resonance in a plasmonic double grating structure. Opt Express 24(20):22334–22344CrossRefGoogle Scholar
  21. 21.
    Guo L, Sun Z (2015) Analytical determination of plasmon resonances in mim nanocavities. Plasmonics 10 (6):1625–1629CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electronic Engineering and AutomationGuilin University of Electronic TechnologyGuilinChina
  2. 2.Guangxi Key Laboratory of Automatic Detecting and InstrumentsGuilinChina
  3. 3.Guangxi Key Laboratory of Opto-electronic Information ProcessingGuilinChina

Personalised recommendations