, Volume 14, Issue 6, pp 1497–1504 | Cite as

A Speckle-Free Angular Interrogation SPR Imaging Sensor Based on Galvanometer Scan and Laser Excitation

  • Youjun Zeng
  • Jie Zhou
  • Xiaoping Xiao
  • Lei Wang
  • Junle Qu
  • Xuejin Li
  • Bruce Zhi GaoEmail author
  • Yonghong ShaoEmail author


A speckle-free fast angular interrogation surface plasmon resonance imaging (SPRi) sensor based on a diode-pumped all-solid-state laser and galvanometer is reported in this work. A bidirectional scan using a galvanometer realizes the fast scanning of the incidence angle. The experimental results showed that the time needed for completing an SPR dip measurement was decreased to 0.5 s. And through cascading an immovable diffuser and two diffusers rotating in opposite directions, laser speckle was eliminated. The dynamic detection range and the sensitivity reached 4.6 × 10−2 and 1.52 × 10−6 refractive index unit (RIU), respectively, in a 2D array sensor when the angle scanning range was set as 7.5°. More importantly, the results demonstrated that the angular interrogation SPR imaging sensor scheme had the capability to perform fast and high-throughput detection of biomolecular interactions at 2D sensor arrays.


Surface plasmon resonance imaging sensor Angular interrogation Speckle-free Biomolecule interaction 


Author Contributions

Youjun Zeng and Yonghong Shao designed the experiments; Youjun Zeng, Jie Zhou, and Lei Wang performed the experiments; Youjun Zeng, Junle Qu, and Xiaoping Xiao analyzed the data; Yonghong Shao and Xuejin Li contributed reagents/materials/analysis tools; Youjun Zeng, Jie Zhou, and Bruce Zhi Gao wrote the paper.

Funding information

This work was partially supported by the National Key Research and Development Program of China (2017YFB0403804); Project from National Natural Science Foundation of China (61527827, 61775148); Guangdong Natural Science Foundation and Province Project (2017B020210006, 2018A030310544); and Shenzhen Science and Technology R&D and Innovation Foundation (JCYJ20160422151611496, GRCK2017042110420047).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Wood RW (1902) XLIVA suspected case of the electrical resonance of minute metal particles for light-waves. A new type of absorption. Philos Mag 3:396–410CrossRefGoogle Scholar
  2. 2.
    Homola J (2008) Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem Rev 39:462–493CrossRefGoogle Scholar
  3. 3.
    Chabot V, Cuerrier CM, Escher E, Aimez V, Grandbois M, Charette PG (2009) Biosensing based on surface plasmon resonance and living cells. Biosens Bioelectron 24:1667–1673CrossRefGoogle Scholar
  4. 4.
    Chi LW, Olivo M (2014) Surface Plasmon Resonance Imaging Sensors: A Review. Plasmonics 9:809–824CrossRefGoogle Scholar
  5. 5.
    Scarano S, Mascini M, Turner A (2010) Surface plasmon resonance imaging for affinity-based biosensors. Biosens Bioelectron 25:957–966CrossRefGoogle Scholar
  6. 6.
    Nelson BP, Grimsrud TE, Liles MR, Goodman RM, Corn RM (2001) Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal Chem 73:1–7CrossRefGoogle Scholar
  7. 7.
    Knoll W (1998) Interfaces and thin films as seen by bound electromagnetic waves. Annu Rev Phys Chem 49:569–638CrossRefGoogle Scholar
  8. 8.
    Thiel AJ, Frutos AG, Jordan CE, And RMC, Smith LM (1997) In situ surface plasmon resonance imaging detection of DNA hybridization to oligonucleotide arrays on gold surfaces. Anal Chem 69:4948–4956CrossRefGoogle Scholar
  9. 9.
    Douzi B (2017) Protein–protein interactions: surface plasmon resonance. Methods Mol Biol 1615:257–275CrossRefGoogle Scholar
  10. 10.
    Drescher DG, Selvakumar D, Drescher MJ (2018) Advances in protein. Chem Struct Biol 110:1–30Google Scholar
  11. 11.
    Abadian PN, Kelley CP, Goluch ED (2014) Cellular Analysis and Detection Using Surface Plasmon Resonance Techniques. Anal Chem 86:2799–2812CrossRefGoogle Scholar
  12. 12.
    Fathi F, Rezabakhsh A, Rahbarghazi R, Rashidi MR (2017) Early-stage detection of VE-cadherin during endothelial differentiation of human mesenchymal stem cells using SPR biosensor. Biosens Bioelectron 96:358–366CrossRefGoogle Scholar
  13. 13.
    Liu R, Wang Q, Li Q, Yang X, Wang K, Nie W (2017) Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy. Biosens Bioelectron 87:433–438CrossRefGoogle Scholar
  14. 14.
    Jia S, Li P, Koh K, Chen H (2016) A cytosensor based on NiO nanoparticle-enhanced surface plasmon resonance for detection of the breast cancer cell line MCF-7. Microchim Acta 183:683–688CrossRefGoogle Scholar
  15. 15.
    Hickel W, Kamp D, Knoll W (1989) Surface-plasmon microscopy. Nature 339:186–186CrossRefGoogle Scholar
  16. 16.
    Mohanty BC, Kasiviswanathan S (2005) Two-prism setup for surface plasmon resonance studies. Rev Sci Instrum 76:033103CrossRefGoogle Scholar
  17. 17.
    Singh P (2016) SPR biosensors: historical perspectives and current challenges. Sensors Actuators B Chem 229:110–130CrossRefGoogle Scholar
  18. 18.
    Sereda A, Moreau J, Canva M, Maillart E (2014) High performance multi-spectral interrogation for surface plasmon resonance imaging sensors. Biosens Bioelectron 54:175–180CrossRefGoogle Scholar
  19. 19.
    Mohanty BC, Kasiviswanathan S (2005) Two-prism setup for surface plasmon resonance studies. Rev Sci Instrum 76:145–148CrossRefGoogle Scholar
  20. 20.
    Sathiyamoorthy K, Ramya B, Murukeshan VM, Sun XW (2013) Modified two prism SPR sensor configurations to improve the sensitivity of measurement. Sensors Actuators A Phys 191:73–77CrossRefGoogle Scholar
  21. 21.
    Zhou C, Jin W, Zhang Y, Yang M, Xiang L, Wu Z, Jin Q, Mu Y (2013) An angle-scanning surface plasmon resonance imaging device for detection of mismatched bases in caspase-3 DNA. Anal Methods 5(5):2369–2373CrossRefGoogle Scholar
  22. 22.
    Ma H, Guo J, Liu L, Ma S, Zhang Y, He Y (2008) Parallel scan spectral surface plasmon resonance imaging. Appl Opt 47:5616–5621CrossRefGoogle Scholar
  23. 23.
    Vanwiggeren GD, Bynum MA, Ertel JP, Jefferson S, Robotti KM, Thrush EP, Baney DM, Killeen KP (2007) A novel optical method providing for high-sensitivity and high-throughput biomolecular interaction analysis. Sensors Actuators B Chem 127:341–349CrossRefGoogle Scholar
  24. 24.
    Beusink JB, Lokate AMC, Besselink GAJ, Pruijn GJM, Schasfoort RBM (2008) Angle-scanning SPR imaging for detection of biomolecular interactions on microarrays. Biosens Bioelectron 23:839–844CrossRefGoogle Scholar
  25. 25.
    Joseph W, Goodman JW (2007) Speckle Phenomena in Optics: Theory and Applications. Stat Phys 130:413–414CrossRefGoogle Scholar
  26. 26.
    Andreev AL (2008) Speckle suppression using a liquid-crystal cell. Quantum Electron 38:1166–1170CrossRefGoogle Scholar
  27. 27.
    Goodman JW, Kubota S (2010) Appl Opt 49:4385–4391CrossRefGoogle Scholar
  28. 28.
    Asakura T, Takai N (1981) Dynamic laser speckles and their application to velocity measurements of the diffuse object. Appl Phys 25:179–194CrossRefGoogle Scholar
  29. 29.
    Riechert F, Craggs G, Meuret Y, Van GB, Thienpont H, Lemmer U, Verschaffelt G (2009) Low-speckle laser projection with a broad-area vertical-cavity surface-emitting laser in the nonmodal emission regime. Appl Opt 48:792–798CrossRefGoogle Scholar
  30. 30.
    Goodman JW (1976) Some fundamental properties of speckle*. Opt Soc Am 66:1145–1150CrossRefGoogle Scholar
  31. 31.
    Völker A, Zakharov P, Weber B, Buck F, Scheffold F (2005) Laser speckle imaging with an active noise reduction scheme. Opt Express 13:9782–9787CrossRefGoogle Scholar
  32. 32.
    Byopadhyay R, Gittings AS, Suh SS, Dixon PK, Durian DJ (2005) Speckle-visibility spectroscopy: A tool to study time-varying dynamics. Rev Sci Instrum 76:205–216Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Youjun Zeng
    • 1
  • Jie Zhou
    • 1
  • Xiaoping Xiao
    • 2
  • Lei Wang
    • 1
  • Junle Qu
    • 1
  • Xuejin Li
    • 1
  • Bruce Zhi Gao
    • 3
    Email author
  • Yonghong Shao
    • 1
    Email author
  1. 1.College of Optoelectronics Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Sensor TechnologyShenzhen UniversityShenzhenChina
  2. 2.Hunan Institute of Metrology & TestChangshaChina
  3. 3.Department of Bioengineering and COMSETClemson UniversityClemsonUSA

Personalised recommendations