Multi-Band Terahertz Absorber at 0.1–1 THz Frequency Based on Ultra-Thin Metamaterial
- 255 Downloads
- 5 Citations
Abstract
In this letter, we design a terahertz (THz) multi-band absorber comprised of four square open/closed loops and a ring wall resonant metamaterial with a high absorption rate for TE and TM polarization. Based on resonant response of metamaterial, five different sizes of the metal rings could tune five absorption peaks to produce five-band absorbing performance in the frequency ranging from 0.1 to 1 THz. By comparing the absorber consisting of independent ring with multiple rings, the multi-band absorption could be demonstrated by increasing the number of metal rings. The simulation results are indicated that the multi-band absorbing of the THz absorber is independent of incident angle within a wide range. The design method of the absorber presented can not only provide a theoretical tool to perform diversity absorbing with multiple band and multi-absorption azimuth in terahertz communications, but also has potential for applications in THz imagers, detectors, sensors, and emitters.
Keywords
Multi-band absorber Metamaterial Finite difference frequency domain Terahertz communicationsNotes
Funding Information
This work was supported by the National Natural Science Foundation of China (NSFC) (No. 61705200).
References
- 1.Lee DH, Ling K, Lim S, Baek CW (2015) Fabrication of polarization-insensitive, multi-resonant metamaterial absorber using wafer bonding of glass dielectric substrate[J]. Microelectron Eng 136:42–47. https://doi.org/10.1016/j.mee.2015.04.010 CrossRefGoogle Scholar
- 2.Commandré M, Vial B, Tisserand S, Roux L, Dallaporta H, Bedu F, Demésy G, Nicolet A, Zolla F (2015) Design, fabrication and characterization of resonant metamaterial filters for infrared multispectral imaging[J]. Thin Solid Films 592:296–304. https://doi.org/10.1016/j.tsf.2015.04.026 CrossRefGoogle Scholar
- 3.Li L, Yang Y, Liang C (2011) A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes[J]. J Appl Phys 110(6):063702–063702-5. https://doi.org/10.1063/1.3638118 CrossRefGoogle Scholar
- 4.Booske JH (2008) Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generationa [J]. Physics of Plasmas 15(5):459–597. https://doi.org/10.1063/1.2838240 CrossRefGoogle Scholar
- 5.Porterfield DW High-efficiency terahertz frequency triplers[C]// microwave symposium, 2007. IEEE/MTT-S Int 2007:337–340. https://doi.org/10.1109/mwsym.2007.380439
- 6.Chow WW, Wanke MC, Lerttamrab M et al (2007) THz quantum cascade lasers for standoff molecule detection. Off Sci Res Inf Tech Rep. https://doi.org/10.2172/921751
- 7.He M, Li J, Liu G (2012) Progress of terahertz active control functional devices[J]. J Electron Measurement & Instrument 26(7):567–576. https://doi.org/10.3724/SP.J.1187.2012.00567 CrossRefGoogle Scholar
- 8.Zhang B, Lv L, He T et al (2015) Active terahertz device based on optically controlled organometal halide perovskite[J]. Appl Phys Lett 107(9):85_1. https://doi.org/10.1109/irmmw-thz.2016.7758658 CrossRefGoogle Scholar
- 9.Liao Z, Liu S, Ma HF, Li C, Jin B, Cui TJ (2016) Electromagnetically induced transparency metamaterial based on spoof localized surface plasmons at terahertz frequencies[J]. Sci Rep 6(27596). https://doi.org/10.1038/srep27596
- 10.Chen HT, Kersting R, Cho GC (2003) Terahertz imaging with nanometer resolution[J]. Appl Phys Lett 83(15):3009–3011. https://doi.org/10.1063/1.1616668 CrossRefGoogle Scholar
- 11.Petre S, Randolph M (2005) Spectral analysis of signals (POD)[J]. Leber Magen Darm 13(2):57–63Google Scholar
- 12.Debus C, Bolivar P H (2007) Frequency selective surfaces for high-sensitivity terahertz sensors[C]// lasers and electro-optics, 2007. CLEO 2007. Conference on IEEE, 1–2. doi https://doi.org/10.1109/cleo.2007.4452943
- 13.Liang C, Niu G, Chen X, Zhou Z, Yi Z, Ye X, Duan T, Yi Y, Xiao S (2019) Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance. Opt Commun 436:57–62. https://doi.org/10.1016/j.optcom.2018.11.083 CrossRefGoogle Scholar
- 14.Cen C, Lin H, Huang J, Liang C, Chen X, Tang Y, Yi Z, Ye X, Liu J, Yi Y, Xiao S (2018) A tunable Plasmonic refractive index sensor with Nanoring-strip graphene arrays. Sensors 18(12):4489–4462. https://doi.org/10.3390/s18124489 CrossRefGoogle Scholar
- 15.Cen C, Chen J, Liang C, Huang J, Chen X, Tang Y, Yi Z, Xu X, Yi Y, Xiao S (2018) Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays. Physica E Low Dimens Syst Nanostruct 103:93–98. https://doi.org/10.1016/j.physe.2018.05.033 CrossRefGoogle Scholar
- 16.Krumbholz N, Gerlach K, Rutz F, Koch M, Piesiewicz R, Kürner T, Mittleman D (2006) Omnidirectional terahertz mirrors: a key element for future terahertz communication systems[J]. Appl Phys Lett 88(20):910. https://doi.org/10.1063/1.2205727 CrossRefGoogle Scholar
- 17.Chao G, Shaobo Q, Pei Z et al (2011) Multiband terahertz metamaterial absorber[J]. Chin Phys B 20(1):622–626. https://doi.org/10.1088/1674-1056/20/1/017801 CrossRefGoogle Scholar
- 18.Lu Y, Li J, Zhang S, Sun J, Yao JQ (2018) Polarization-insensitive broadband terahertz metamaterial absorber based on hybrid structures[J]. Appl Opt 57(21):6269–6275. https://doi.org/10.1364/ao.57.006269 CrossRefPubMedGoogle Scholar
- 19.Wu T, Lai J, Wang S, Li X, Huang Y (2017) UV-visible broadband wide-angle polarization-insensitive absorber based on metal groove structures with multiple depths.[J]. Appl Opt 56(21):5844–5848. https://doi.org/10.1364/ao.56.005844 CrossRefPubMedGoogle Scholar
- 20.Wen QY, Zhang HW, Xie YS, Yang QH, Liu YL (2009) Dual band terahertz metamaterial absorber: design, fabrication, and characterization[J]. Appl Phys Lett 95(24):207402. https://doi.org/10.1063/1.3276072 CrossRefGoogle Scholar
- 21.Pan W, Yu X, Zhang J, Zeng W (2016) A novel design of broadband terahertz metamaterial absorber based on nested circle rings[J]. IEEE Photon Technol Lett 28(21):2335–2338. https://doi.org/10.1109/lpt.2016.2593699 CrossRefGoogle Scholar
- 22.Wang BX, Wang GZ (2017) New type design of the triple-band and five-band metamaterial absorbers at terahertz frequency[J]. Plasmonics 1–8. doi https://doi.org/10.1007/s11468-016-0491-z CrossRefGoogle Scholar
- 23.Meng HY, Wang LL, Zhai X, Liu GD, Xia SX (2017) A simple design of a multi-band terahertz metamaterial absorber based on periodic square metallic layer with T-shaped gap[J]. Plasmonics 13:1–6. https://doi.org/10.1007/s11468-017-0509-1 CrossRefGoogle Scholar
- 24.Janneh M, De Marcellis A, Palange E et al (2018) Design of a metasurface-based dual-band terahertz perfect absorber with very high Q-factors for sensing applications[J]. Opt Commun 416:152–159. https://doi.org/10.1016/j.optcom.2018.02.013 CrossRefGoogle Scholar
- 25.Huang M, Cheng Y, Cheng Z, Chen H, Mao X, Gong R (2018) Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle[J]. Opt Commun 415:194–201. https://doi.org/10.1016/j.optcom.2018.01.051 CrossRefGoogle Scholar
- 26.Wang GZ, Wang BX (2015) Five-band terahertz metamaterial absorber based on a four-gap comb resonator[J]. J Lightwave Technol 33(24):5151–5156. https://doi.org/10.1109/jlt.2015.2497740 CrossRefGoogle Scholar
- 27.Mulla B, Sabah C (2017) Multi-band metamaterial absorber topology for infrared frequency regime[J]. Physica E Low Dimens Syst Nanostruct 86:44–51. https://doi.org/10.1016/j.physe.2016.10.003 CrossRefGoogle Scholar
- 28.Sabah C, Mulla B, Altan H, Ozyuzer L (2018) Cross-like terahertz metamaterial absorber for sensing applications[J]. Pramana 91(2):17. https://doi.org/10.1007/s12043-018-1591-4 CrossRefGoogle Scholar
- 29.Gong B, Guo F, Zou W, Chen L, Song K, Zhao X (2017) New design of multi-band negative-index metamaterial and absorber at visible frequencies[J]. Mod Phys Lett B 31(24):77. https://doi.org/10.1142/s0217984917502864 CrossRefGoogle Scholar
- 30.Meng T, Hu D, Zhu Q (2018) Design of a five-band terahertz perfect metamaterial absorber using two resonators[J]. Opt Commun 415:151–155. https://doi.org/10.1016/j.optcom.2018.01.048 CrossRefGoogle Scholar
- 31.Bakshi SC, Mitra D, Minz L (2018) A compact design of multiband terahertz metamaterial absorber with frequency and polarization tunability[J]. Plasmonics 13(11):1–10. https://doi.org/10.1007/s11468-018-0698-2 CrossRefGoogle Scholar
- 32.Liu Y, Xu SQ, Liu M, Hu XG, Duan YF, Yi L (2018) Tunable multi-band terahertz absorber based on a one-dimensional heterostructure containing semiconductor[J]. Optik 170:203–209. https://doi.org/10.1016/j.ijleo.2018.05.099 CrossRefGoogle Scholar
- 33.Liu H, Zhao L, Dong S et al (2018) Theoretical design of twelve-band infrared metamaterial perfect absorber by combining the dipole, quadrupole, and octopole plasmon resonance modes of four different ring-strip resonators[J]. Opt Express 26(10):12838–12851. https://doi.org/10.1364/oe.26.012838 CrossRefPubMedGoogle Scholar