Advertisement

Plasmonics

, Volume 14, Issue 6, pp 1303–1310 | Cite as

Multi-Band Terahertz Absorber at 0.11 THz Frequency Based on Ultra-Thin Metamaterial

  • Yu He
  • Qiannan WuEmail author
  • Shinong Yan
Article

Abstract

In this letter, we design a terahertz (THz) multi-band absorber comprised of four square open/closed loops and a ring wall resonant metamaterial with a high absorption rate for TE and TM polarization. Based on resonant response of metamaterial, five different sizes of the metal rings could tune five absorption peaks to produce five-band absorbing performance in the frequency ranging from 0.1 to 1 THz. By comparing the absorber consisting of independent ring with multiple rings, the multi-band absorption could be demonstrated by increasing the number of metal rings. The simulation results are indicated that the multi-band absorbing of the THz absorber is independent of incident angle within a wide range. The design method of the absorber presented can not only provide a theoretical tool to perform diversity absorbing with multiple band and multi-absorption azimuth in terahertz communications, but also has potential for applications in THz imagers, detectors, sensors, and emitters.

Keywords

Multi-band absorber Metamaterial Finite difference frequency domain Terahertz communications 

Notes

Funding Information

This work was supported by the National Natural Science Foundation of China (NSFC) (No. 61705200).

References

  1. 1.
    Lee DH, Ling K, Lim S, Baek CW (2015) Fabrication of polarization-insensitive, multi-resonant metamaterial absorber using wafer bonding of glass dielectric substrate[J]. Microelectron Eng 136:42–47.  https://doi.org/10.1016/j.mee.2015.04.010 CrossRefGoogle Scholar
  2. 2.
    Commandré M, Vial B, Tisserand S, Roux L, Dallaporta H, Bedu F, Demésy G, Nicolet A, Zolla F (2015) Design, fabrication and characterization of resonant metamaterial filters for infrared multispectral imaging[J]. Thin Solid Films 592:296–304.  https://doi.org/10.1016/j.tsf.2015.04.026 CrossRefGoogle Scholar
  3. 3.
    Li L, Yang Y, Liang C (2011) A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes[J]. J Appl Phys 110(6):063702–063702-5.  https://doi.org/10.1063/1.3638118 CrossRefGoogle Scholar
  4. 4.
    Booske JH (2008) Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generationa [J]. Physics of Plasmas 15(5):459–597.  https://doi.org/10.1063/1.2838240 CrossRefGoogle Scholar
  5. 5.
    Porterfield DW High-efficiency terahertz frequency triplers[C]// microwave symposium, 2007. IEEE/MTT-S Int 2007:337–340.  https://doi.org/10.1109/mwsym.2007.380439
  6. 6.
    Chow WW, Wanke MC, Lerttamrab M et al (2007) THz quantum cascade lasers for standoff molecule detection. Off Sci Res Inf Tech Rep.  https://doi.org/10.2172/921751
  7. 7.
    He M, Li J, Liu G (2012) Progress of terahertz active control functional devices[J]. J Electron Measurement & Instrument 26(7):567–576.  https://doi.org/10.3724/SP.J.1187.2012.00567 CrossRefGoogle Scholar
  8. 8.
    Zhang B, Lv L, He T et al (2015) Active terahertz device based on optically controlled organometal halide perovskite[J]. Appl Phys Lett 107(9):85_1.  https://doi.org/10.1109/irmmw-thz.2016.7758658 CrossRefGoogle Scholar
  9. 9.
    Liao Z, Liu S, Ma HF, Li C, Jin B, Cui TJ (2016) Electromagnetically induced transparency metamaterial based on spoof localized surface plasmons at terahertz frequencies[J]. Sci Rep 6(27596).  https://doi.org/10.1038/srep27596
  10. 10.
    Chen HT, Kersting R, Cho GC (2003) Terahertz imaging with nanometer resolution[J]. Appl Phys Lett 83(15):3009–3011.  https://doi.org/10.1063/1.1616668 CrossRefGoogle Scholar
  11. 11.
    Petre S, Randolph M (2005) Spectral analysis of signals (POD)[J]. Leber Magen Darm 13(2):57–63Google Scholar
  12. 12.
    Debus C, Bolivar P H (2007) Frequency selective surfaces for high-sensitivity terahertz sensors[C]// lasers and electro-optics, 2007. CLEO 2007. Conference on IEEE, 1–2. doi  https://doi.org/10.1109/cleo.2007.4452943
  13. 13.
    Liang C, Niu G, Chen X, Zhou Z, Yi Z, Ye X, Duan T, Yi Y, Xiao S (2019) Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance. Opt Commun 436:57–62.  https://doi.org/10.1016/j.optcom.2018.11.083 CrossRefGoogle Scholar
  14. 14.
    Cen C, Lin H, Huang J, Liang C, Chen X, Tang Y, Yi Z, Ye X, Liu J, Yi Y, Xiao S (2018) A tunable Plasmonic refractive index sensor with Nanoring-strip graphene arrays. Sensors 18(12):4489–4462.  https://doi.org/10.3390/s18124489 CrossRefGoogle Scholar
  15. 15.
    Cen C, Chen J, Liang C, Huang J, Chen X, Tang Y, Yi Z, Xu X, Yi Y, Xiao S (2018) Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays. Physica E Low Dimens Syst Nanostruct 103:93–98.  https://doi.org/10.1016/j.physe.2018.05.033 CrossRefGoogle Scholar
  16. 16.
    Krumbholz N, Gerlach K, Rutz F, Koch M, Piesiewicz R, Kürner T, Mittleman D (2006) Omnidirectional terahertz mirrors: a key element for future terahertz communication systems[J]. Appl Phys Lett 88(20):910.  https://doi.org/10.1063/1.2205727 CrossRefGoogle Scholar
  17. 17.
    Chao G, Shaobo Q, Pei Z et al (2011) Multiband terahertz metamaterial absorber[J]. Chin Phys B 20(1):622–626.  https://doi.org/10.1088/1674-1056/20/1/017801 CrossRefGoogle Scholar
  18. 18.
    Lu Y, Li J, Zhang S, Sun J, Yao JQ (2018) Polarization-insensitive broadband terahertz metamaterial absorber based on hybrid structures[J]. Appl Opt 57(21):6269–6275.  https://doi.org/10.1364/ao.57.006269 CrossRefPubMedGoogle Scholar
  19. 19.
    Wu T, Lai J, Wang S, Li X, Huang Y (2017) UV-visible broadband wide-angle polarization-insensitive absorber based on metal groove structures with multiple depths.[J]. Appl Opt 56(21):5844–5848.  https://doi.org/10.1364/ao.56.005844 CrossRefPubMedGoogle Scholar
  20. 20.
    Wen QY, Zhang HW, Xie YS, Yang QH, Liu YL (2009) Dual band terahertz metamaterial absorber: design, fabrication, and characterization[J]. Appl Phys Lett 95(24):207402.  https://doi.org/10.1063/1.3276072 CrossRefGoogle Scholar
  21. 21.
    Pan W, Yu X, Zhang J, Zeng W (2016) A novel design of broadband terahertz metamaterial absorber based on nested circle rings[J]. IEEE Photon Technol Lett 28(21):2335–2338.  https://doi.org/10.1109/lpt.2016.2593699 CrossRefGoogle Scholar
  22. 22.
    Wang BX, Wang GZ (2017) New type design of the triple-band and five-band metamaterial absorbers at terahertz frequency[J]. Plasmonics 1–8. doi  https://doi.org/10.1007/s11468-016-0491-z CrossRefGoogle Scholar
  23. 23.
    Meng HY, Wang LL, Zhai X, Liu GD, Xia SX (2017) A simple design of a multi-band terahertz metamaterial absorber based on periodic square metallic layer with T-shaped gap[J]. Plasmonics 13:1–6.  https://doi.org/10.1007/s11468-017-0509-1 CrossRefGoogle Scholar
  24. 24.
    Janneh M, De Marcellis A, Palange E et al (2018) Design of a metasurface-based dual-band terahertz perfect absorber with very high Q-factors for sensing applications[J]. Opt Commun 416:152–159.  https://doi.org/10.1016/j.optcom.2018.02.013 CrossRefGoogle Scholar
  25. 25.
    Huang M, Cheng Y, Cheng Z, Chen H, Mao X, Gong R (2018) Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle[J]. Opt Commun 415:194–201.  https://doi.org/10.1016/j.optcom.2018.01.051 CrossRefGoogle Scholar
  26. 26.
    Wang GZ, Wang BX (2015) Five-band terahertz metamaterial absorber based on a four-gap comb resonator[J]. J Lightwave Technol 33(24):5151–5156.  https://doi.org/10.1109/jlt.2015.2497740 CrossRefGoogle Scholar
  27. 27.
    Mulla B, Sabah C (2017) Multi-band metamaterial absorber topology for infrared frequency regime[J]. Physica E Low Dimens Syst Nanostruct 86:44–51.  https://doi.org/10.1016/j.physe.2016.10.003 CrossRefGoogle Scholar
  28. 28.
    Sabah C, Mulla B, Altan H, Ozyuzer L (2018) Cross-like terahertz metamaterial absorber for sensing applications[J]. Pramana 91(2):17.  https://doi.org/10.1007/s12043-018-1591-4 CrossRefGoogle Scholar
  29. 29.
    Gong B, Guo F, Zou W, Chen L, Song K, Zhao X (2017) New design of multi-band negative-index metamaterial and absorber at visible frequencies[J]. Mod Phys Lett B 31(24):77.  https://doi.org/10.1142/s0217984917502864 CrossRefGoogle Scholar
  30. 30.
    Meng T, Hu D, Zhu Q (2018) Design of a five-band terahertz perfect metamaterial absorber using two resonators[J]. Opt Commun 415:151–155.  https://doi.org/10.1016/j.optcom.2018.01.048 CrossRefGoogle Scholar
  31. 31.
    Bakshi SC, Mitra D, Minz L (2018) A compact design of multiband terahertz metamaterial absorber with frequency and polarization tunability[J]. Plasmonics 13(11):1–10.  https://doi.org/10.1007/s11468-018-0698-2 CrossRefGoogle Scholar
  32. 32.
    Liu Y, Xu SQ, Liu M, Hu XG, Duan YF, Yi L (2018) Tunable multi-band terahertz absorber based on a one-dimensional heterostructure containing semiconductor[J]. Optik 170:203–209.  https://doi.org/10.1016/j.ijleo.2018.05.099 CrossRefGoogle Scholar
  33. 33.
    Liu H, Zhao L, Dong S et al (2018) Theoretical design of twelve-band infrared metamaterial perfect absorber by combining the dipole, quadrupole, and octopole plasmon resonance modes of four different ring-strip resonators[J]. Opt Express 26(10):12838–12851.  https://doi.org/10.1364/oe.26.012838 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of ScienceNorth University of ChinaTaiyuanChina

Personalised recommendations