, Volume 14, Issue 6, pp 1565–1575 | Cite as

Enhanced Morphological Properties of Macroporous Silicon with the Incorporation of Au-Ag Bimetallic Nanoparticles for Improved CO2 Gas Sensing

  • Alwan M. AlwanEmail author
  • Muslim F. Jawad
  • Duaa A. Hashim


In this work, the effects of incorporating bare macroporous silicon (macro-Psi) layer with bimetallic nanoparticles Au-Ag on the performance Psi CO2 gas sensor synthesized by a laser-assisted etching (LAE) process were investigated. Well-controlled and simple immersion process of bare macro-Psi layer in the 10−3 M of silver nitrate (AgNO3) and chloroauric acid (HAuCl4) individually and in the mixing solution with ratio 1:1 was employed to synthesize monometallic AuNPs/macro-Psi, AgNPs/macro-Psi, and bimetallic Au-AgNPs/macro-Psi hybrid structures of CO2 gas sensors. Morphological properties of bare macro-Psi layer, monometallic, and bimetallic hybrid structures were investigated using X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), and energy-dispersive X-ray analysis (EDS). Electrical characteristics (I–V)of the sensor were measured primary in a vacuum case and with CO2 at 0.2, 0.5, 1, and 1.5 mbar gas pressures. The result showed a significant enhancement in sensitivity and temporal response of the bimetallic hybrid structures compared with that of monometallic and bare macro-Psi layer and an enhanced performance of the sensors due to the high value of integrated specific surface area of the bimetallic nanoparticles and the resulting Schottky barrier height.


Monometallic nanoparticles Bimetallic nanoparticles Sensitivity CO2 gas sensing Macro-Psi 



The author would like to express thanks to the Department of Applied Sciences, Nanotechnology and Advanced Materials Research Center, University of Technology, and Razi Metallurgical Research Center, Iran for their facility and help to use the SEM (MIRA3 TESCAN) device and conducting the EDS analyses.


  1. 1.
    Alwan AM, Naseef IA, Dheyab AB (2018) Well controlling of plasmonic features of gold nanoparticles on macroporous silicon substrate by HF acid concentration. Plasmonics 13(6):2037–2045CrossRefGoogle Scholar
  2. 2.
    Martínez HM, Rincon NE, Torres J, Alfonso JE (2008) Porous silicon thin film as CO sensor. Microelectron J 39:1354–1355CrossRefGoogle Scholar
  3. 3.
    Barillaro G, Nannini A, Pieri F (2003) A new, porous silicon-based gas sensing device. Sensors Actuators B 93:263–270CrossRefGoogle Scholar
  4. 4.
    Naama S, Hadjersi T, Keffous A, Nezzal G (2015) CO2 gas sensor based on silicon nanowires modified with metal nanoparticles. Mater Sci Semicond Process 38:367–372CrossRefGoogle Scholar
  5. 5.
    Ahmeda LB, Naamab S, Keffousb A, Hassein-Beya A, Hadjersi T (2015) H2 sensing properties of modified silicon nanowires. Prog Nat Sci Mater Int 25:101–110CrossRefGoogle Scholar
  6. 6.
    World Health Organization. Water, Sanitation and Health Team (2004) Guidelines for drinking-water quality. Recommendations, vol 1, 3rd edn. World Health Organization.
  7. 7.
    Kumar M, Sandeep CSS, Kumar G, Mishra YK, Philip R, Reddy GB (2016) Plasmonic and nonlinear optical absorption properties of Ag:ZrO2 nanocomposite thin films. Plasmonics 11:261–267CrossRefGoogle Scholar
  8. 8.
    Kumar M, Kumar T, Avasthi DK (2015) Study of thermal annealing induced plasmonic bleaching in Ag:TiO2 nanocomposite thin films. Scr Mater 105:46–49CrossRefGoogle Scholar
  9. 9.
    Kumar M, Reddy GB (2014) Stability-inspired entrapment of Ag nanoparticles in ZrO2 thin films. Plasmonics 9:129–136CrossRefGoogle Scholar
  10. 10.
    Wilson SC, Jones KC (1993) Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs). Environ Pollut 81:229–249CrossRefGoogle Scholar
  11. 11.
    Alwan AM, Hashim DA, Jawad MF (2018) Optimizing of porous silicon alloying process with bimetallic nanoparticles. Gold Bull 51:175–184CrossRefGoogle Scholar
  12. 12.
    Wali LA, Hasan KK, Alwan AM (2019) Rapid and highly efficient detection of ultra-low concentration of penicillin G by gold nanoparticles/porous silicon SERS active substrate. Spectrochim Acta A Mol Biomol Spectrosc 206:31–36CrossRefGoogle Scholar
  13. 13.
    Jabbar AA, Alwan AM, Haider AJ (2018) Modifying and fine controlling of silver nanoparticle nucleation sites and SERS performance by double silicon etching process. Plasmonics 13(4):1171–1182CrossRefGoogle Scholar
  14. 14.
    Shin KS, Kim JH, Kim IH, Kim K (2012) Novel fabrication and catalytic application of poly (ethylenimin)-stabilized gold–silver alloy nanoparticles. J Nanopart Res 14:735CrossRefGoogle Scholar
  15. 15.
    Liu X, Wang A, Yang X, Zhang T, Mou C-Y, Su D-S, Li J (2009) Synthesis of thermally stable and highly active bimetallic Au-Ag nanoparticles on inert supports. Chem Mater 21:410–418CrossRefGoogle Scholar
  16. 16.
    Zhang Q, Lee JY, Yang J, Boothroyd C, Zhang J (2007) Size and composition tunable Ag–Au alloy nanoparticles by replacement reactions. Nanotechnology 18(245605):8Google Scholar
  17. 17.
    Zanoni R, Righini G, Mattogno G, Schirone L, Sotgiu G, Rallos F (1998) X-ray photoelectron spectroscopy characterization of stain-etched luminescent porous silicon films. J Lumin 80:159–162CrossRefGoogle Scholar
  18. 18.
    Dheyab AB, Alwan AM, Zayer MQ (2018) Optimizing of gold nanoparticles on porous silicon morphologies for a sensitive carbon monoxide gas sensor device. Plasmonics 1–9. CrossRefGoogle Scholar
  19. 19.
    Yang L, Li X, Tuo X, Van Nguyen TT, Luo X, Hong M (2011) Alloy nanoparticle plasmon resonance for enhancing broadband antireflection of laser-textured silicon surfaces. Opt Express 19(104):657–663CrossRefGoogle Scholar
  20. 20.
    Sadr S, Azim-Araghi ME, Rahimi M, Dariani RS (2013) Effect of gold electrode annealing on gas sensing properties of nano-and microstructures of macroporous silicon. Indian J Pure Appl Phys 51:860–863Google Scholar
  21. 21.
    Alwan AM (2007) Calculation of energy band gap of porous silicon based on the carrier transport mechanisms. Eng Technol 25(10):1143–1148Google Scholar
  22. 22.
    Alwan AM, Abdulrazaq OA (2008) Aging effect on the photosynthesized porous silicon. Int J Mod Phys B 22(4):417–422CrossRefGoogle Scholar
  23. 23.
    Arizumi T, Hirose M, Alitaf N (1967) Au-Ag alloy-silicon Schottky barriers. Jpn J Appl Phys 7(8):870CrossRefGoogle Scholar
  24. 24.
    Shao M, Cheng L, Zhang X, Ma DDD, Lee ST (2009) Excellent photocatalysis of HF-treated silicon nanowires. J Am Chem Soc 131(49):17738–17739CrossRefGoogle Scholar
  25. 25.
    Salameh S, van der Veen MA, Kappl M, van Ommen JR (2017) Contact forces between single metal oxide nanoparticles in gas-phase applications and processes. Langmuir 33(10):2477–2484CrossRefGoogle Scholar
  26. 26.
    Sze SM (2008) Semiconductor devices: physics and technology. WileyGoogle Scholar
  27. 27.
    Alwan AM, Dheyab AB (2017) Room temperature, CO2 gas sensors of AuNPs/mesoPSi hybrid structures. Appl Nanosci 7(7):335–341CrossRefGoogle Scholar
  28. 28.
    Verma S Kabiraj D Kumar T Kumar S, Kanjilal D (2010) Dependence of Schottky barrier height on metal work function. In: Proc AIP Conference Proceedings AIP, pp 1111–1112Google Scholar
  29. 29.
    Nienhaus H, Bergh HS, Gergen B, Majumdar A, Weinberg WH, McFarland EW (1999) Selective H atom sensors using ultra-thin Ag/Si Schottky diodes. Appl Phys Lett 74(26):4046–4048CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Alwan M. Alwan
    • 1
    Email author
  • Muslim F. Jawad
    • 1
  • Duaa A. Hashim
    • 1
  1. 1.Department of Applied ScienceUniversity of TechnologyBaghdadIraq

Personalised recommendations