pp 1–13 | Cite as

Polarization Properties of Selectively Gold-filled Suspended Core Microstructured Optical Fibers

  • Rajat Kumar Basak
  • Debashri GhoshEmail author


We study the polarization properties of suspended core microstructured optical fibers (SC-MOFs) with hexagonal lattice structure and high air-filling fraction having a single gold-filled hole along the horizontal axis. The interaction between the core-guided light and metal leads to surface plasmon resonance (SPR) at particular frequencies where the phase-matching condition is satisfied. We observe from the modal analysis that MOFs with high air-filling fraction offer the possibility of coupling of the fundamental mode with the first-order surface plasmon polariton (SPP) mode. With the increase in the suspension factor (SF), the fundamental mode couples with higher order SPP modes and the coupling strength also enhances. It also leads to an increase in modal birefringence. Reduction in beat length by an order of magnitude compared to the reported values is being reported for the first time to our knowledge. We have achieved the lowest beat length of 0.0105 mm at 1 μm wavelength for the structure having d/Λ = 0.85 and SF = 1.65. The results show that such plasmonic SC-MOFs may perform as efficient in-fiber polarizers and polarization filters.


Suspended core microstructured optical fibers Suspension factor Surface plasmon resonance Birefringence 



Authors would like to thank the Director, CSIR-CGCRI, Kolkata, Head, Fiber Optics and Photonics Division, CSIR-CGCRI, Kolkata and the Director, School of Material Science and Nanotechnology, Jadavpur University, Kolkata for their support and encouragement.


  1. 1.
    Russell PSJ (2006) Photonic-crystal fibers. J Lightwave Technol 24(12):4729–4749CrossRefGoogle Scholar
  2. 2.
    Russell PSJ (2003) Photonic crystal fibers. Science 299(5605):358–362CrossRefGoogle Scholar
  3. 3.
    Maier S (2007) Plasmonics: fundamentals and applications. Springer, BerlinCrossRefGoogle Scholar
  4. 4.
    Schmidt MA, Sempere LNP, Tyagi HK, Poulton CG, Russell PSJ (2008) Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires. Phys Rev B 77(3):033417CrossRefGoogle Scholar
  5. 5.
    Hautakorpi M, Mattinen M, Ludvigsen H (2008) Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber. Opt Express 16(12):8427–8432CrossRefGoogle Scholar
  6. 6.
    Doherty B, Csaki A, Thiele M, Zeisberger M, Schwuchow A, Kobelke J, Fritzsche W, Schmidt MA (2017) Nanoparticle functionalised small-core suspended-core fibre – a novel platform for efficient sensing. Biomed Opt Express 8(2):790–799CrossRefGoogle Scholar
  7. 7.
    Wu T, Shao Y, Wang Y, Cao S, Cao W, Zhang F, Liao C, He J, Huang Y, Hou M, Wang Y (2017) Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber. Opt Express 25(17):20313–20322CrossRefGoogle Scholar
  8. 8.
    Rifat AA, Haider F, Ahmed R, Mahdiraji GA, Adikan FRM, Miroshnichenko AE (2018) Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor. Opt Lett 43(4):891–894CrossRefGoogle Scholar
  9. 9.
    Jiao S, Gu S, Fang H, Yang H Analysis of dual-core photonic crystal fiber based on surface plasmon resonance sensor with segmented silver film. Plasmonics
  10. 10.
    Lee HW, Schmidt MA, Tyagi HK, Sempere LP, Russell PSJ (2008) Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber. Appl Phys Lett 93(11):111102CrossRefGoogle Scholar
  11. 11.
    Nagasaki A, Saitoh K, Koshiba M (2011) Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes. Opt Express 19(4):3799–3808CrossRefGoogle Scholar
  12. 12.
    Zhang X, Wang R, Cox FM, Kuhlmey BT, Large MCJ (2007) Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers. Opt Express 15(24):16270–16278CrossRefGoogle Scholar
  13. 13.
    Xue J, Li S, Xiao Y, Qin W, Xin X, Zhu X (2013) Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance. Opt Express 21(11):13733–13740CrossRefGoogle Scholar
  14. 14.
    Zhang W, Li S, An G, Fan ZK, Bao YJ (2014) Polarization filter characteristics of photonic crystal fibers with square lattice and selectively filled gold wires. Appl Opt 53(11):2441–2445CrossRefGoogle Scholar
  15. 15.
    An G, Li S, Yan X, Yuan Z, Zhang X (2016) High-birefringence photonic crystal fiber polarization filter based on surface plasmon resonance. Appl Opt 55(6):1262–1266CrossRefGoogle Scholar
  16. 16.
    Li M, Peng L, Zhou G, Li B, Hou Z, Xia C (2017) Design of photonic crystal fiber filter with narrow width and single-polarization based on surface plasmon resonance. IEEE Photonics 9(3):5700108Google Scholar
  17. 17.
    Wang X, Li S, Liu Q, Wang G, Zhao Y (2017) Design of a single-polarization single-mode photonic crystal fiber filter based on surface plasmon resonance. Plasmonics 12(5):1325–1330CrossRefGoogle Scholar
  18. 18.
    Zhang W, Lou S, Wang X (2018) A polarization filter based on a novel photonic crystal fiber with a gold-coated air hole by using surface plasmon resonance. Plasmonics 13(2):365–371CrossRefGoogle Scholar
  19. 19.
    Dou C, Jing X, Li S, Wu J, Wang Q (2018) Low-loss polarization filter at 1.55 μm based on photonic crystal fiber. Optik 162:214–219CrossRefGoogle Scholar
  20. 20.
    Lou J, Cheng T, Li S (2018) Surface plasmon induced dual-wavelength photonic crystal fiber polarizing filter based on coupling between core mode and SPP mode. Opt Commun 426:267–272CrossRefGoogle Scholar
  21. 21.
    Mohsin KM, Alam MS, Hasan DMN, Hossain MN (2011) Dispersion and nonlinearity properties of a chalcogenide As2Se3 suspended core fiber. Appl Opt 50(25):102–107CrossRefGoogle Scholar
  22. 22.
    Ghosh D, Roy S, Bhadra SK (2014) Efficient supercontinuum sources based on suspended core microstructured fibers. IEEE Journal of Selected Topics in Quantum Electronics 20(5):7600108CrossRefGoogle Scholar
  23. 23.
    Ghosh D, Bose S, Roy S, Bhadra SK (2015) Design and fabrication of microstructured optical fibers with optimized core suspension for enhanced supercontinuum generation. J Lightwave Technol 33(19):4156–4162CrossRefGoogle Scholar
  24. 24.
    Farin G (2001) Curves and surfaces for CAGD, 5th edn. Academic Press, CambridgeGoogle Scholar
  25. 25.
    Ghatak A, Thyagarajan K (2011) Introduction to fiber optics. Cambridge University Press, CambridgeGoogle Scholar
  26. 26.
    Rakić AD, Djuriŝć AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37(22):5271–5283CrossRefGoogle Scholar
  27. 27.
    Renversez G, Kuhlmey B, McPhedran R (2003) Dispersion management with microstructured optical fibers: chromatic dispersion with low losses. Opt Lett 28(12):989–991CrossRefGoogle Scholar
  28. 28.
    Zhang Z, Shi Y, Bian B, Lu J (2008) Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding. Opt Express 16(3):1915–1922CrossRefGoogle Scholar
  29. 29.
    Rui H (2016) Highly birefringent photonic crystal fiber with a squeezed core and a small modal area. Optik 127(13):5245–5248CrossRefGoogle Scholar
  30. 30.
    Ortigosa-Blanch A, Knight JC, Wadsworth WJ, Arriaga J, Mangan BJ, Birks TA, Russell PSJ (2000) Highly birefringent photonic crystal fibers. Opt Lett 25(18):1325–1327CrossRefGoogle Scholar
  31. 31.
    Hansen TP, Broeng J, Libori SEB, Knudsen E, Bjarklev A, Jensen JR, Simonsen H (2001) Highly birefringent index-guiding photonic crystal fibers. IEEE Photon Technol Lett 13(6):588–590CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Fiber Optics and Photonics DivisionCSIR - Central Glass and Ceramic Research InstituteKolkataIndia
  2. 2.School of Material Science and NanotechnologyJadavpur UniversityKolkataIndia

Personalised recommendations