, Volume 14, Issue 6, pp 1335–1345 | Cite as

Ultra-compact Spatial Terahertz Switch Based on Graphene Plasmonic-Coupled Waveguide

  • Mehdi Dehghan
  • Mohammad Kazem Moravvej-FarshiEmail author
  • Mohsen Ghaffari-Miab
  • Masoud Jabbari
  • Ghafar Darvish


We are proposing graphene (G)-based multilayered plasmonic spatial switch, operating at 10 THz. It is composed of hBN/Ag/hBN/G/hBN/G/hBN/SiO2/p+-Si multilayers. When a 10-THz transverse magnetic (TM)-polarized signal is normally incident upon the structure top surface, the nanoaperture devised in the Ag nanolayer, acting as a grating, excites surface plasmons at the top graphene micro-ribbons/hBN interface. These surface plasmons depending on the graphenes chemical potentials can be coupled to the lower-right or left graphene micro-ribbons and continue to propagate laterally towards the corresponding output port. Numerical simulations show that a change of ∆VG ≈ ± 2.7 V in the voltage, applied to the gated micro-ribbons, can modulate their chemical potentials sufficiently to switch the right (left) output port from ON (OFF) to OFF(ON) and vice versa. Besides its low power consumption, the switch ultra-small dimensions make it a potential spatial router suitable for THz-integrated circuit applications.


Graphene Plasmonic switches Plasmonic router Plasmonic waveguides Surface plasmons Terahertz, waveguide switche 


Funding Information

M. K. Moravvej-Farshi and M. Ghaffari-Miab greatly acknowledge the support from the Tarbiat Modares University through grant #IG-39703.


  1. 1.
    Mohammad-Zamani MJ, Moravvej-Farshi MK, Neshat M (2017) Array of unbiased antennaless THz emitters composed of buried nanoscale asymmetric MSM gratings with dis-similar Schottky barriers. IEEE J Selct Top Quantum Electron 23(4):1–8Google Scholar
  2. 2.
    Mohammad-Zamani MJ, Neshat M, Moravvej-Farshi MK (2016) Nanoslit cavity plasmonic modes and built-in fields enhance the CW THz radiation in an unbiased antennaless photomixers array. Opt Lett 41(2):420–423PubMedGoogle Scholar
  3. 3.
    Mohammad-Zamani MJ, Moravvej-Farshi MK, Neshat M (2015) Unbiased continuous wave terahertz photomixer emitters with dis-similar Schottky barriers. Opt Express 23(15):19129–19141PubMedGoogle Scholar
  4. 4.
    Yarahmadi M, Moravvej-Farshi MK, Yousefi L (2015) Subwavelength graphene-based plasmonic THz switches and logic gates. IEEE T THz Sci Techn 5(5):725–731Google Scholar
  5. 5.
    Faraji M, Moravvej-Farshi MK, Yousefi L (2015) Tunable THz perfect absorber using graphene-based metamaterials. Opt Commun 355:352–355Google Scholar
  6. 6.
    Markov A, Skorobogatiy M (2013) Hybrid plasmonic terahertz fibers for sensing applications. Appl Phys Lett 103(18):181118Google Scholar
  7. 7.
    Soltani A, Neshasteh H, Mataji-Kojouri A, Born N, Castro-Camus E, Shahabadi M, Koch M (2016) Highly sensitive terahertz dielectric sensor for small-volume liquid samples. Appl Phys Lett 108(19):191105Google Scholar
  8. 8.
    Borri S, Patimisco P, Sampaolo A, Beere HE, Ritchie DA, Vitiello MS, Scamarcio G, Spagnolo V (2013) Terahertz quartz enhanced photo-acoustic sensor. Appl Phys Lett 103(2):021105Google Scholar
  9. 9.
    Juan ML, Gordon R, Pang Y, Eftekhari F, Quidant R (2009) Self-induced back-action optical trapping of dielectric nanoparticles. Nat Phys 5:915–919Google Scholar
  10. 10.
    Gao D, Shi R, Huang Y, Gao L (2017) Fano-enhanced pulling and pushing optical force on active plasmonic nanoparticles. Phys Rev A 96:043826Google Scholar
  11. 11.
    Samadi M, Darbari S, Moravvej-Farshi MK (2017) Numerical investigation of tunable plasmonic tweezers based on graphene stripes. Sci Rep 7:14533PubMedPubMedCentralGoogle Scholar
  12. 12.
    Viti L, Coquillat D, Ercolani D, Sorba L, Knap W, Vitiello MS (2014) Nanowire terahertz detectors with a resonant four-leaf-clover-shaped antenna. Opt Express 22(8):8996–9003PubMedGoogle Scholar
  13. 13.
    Regensburger S, Mittendorff M, Winnerl S, Lu H, Gossard AC, Preu S (2015) Broadband THz detection from 0.1 to 22THz with large area field-effect transistors. Opt Express 23(16):20732–20742PubMedGoogle Scholar
  14. 14.
    Miyamaru F, Takeda MW, Suzuki T, Otani C (2007) Highly sensitive surface plasmon terahertz imaging with planar plasmonic crystals. Opt Express 15(22):14804–14809PubMedGoogle Scholar
  15. 15.
    Liu S, Oleg M, Nahata A (2016) Near-field terahertz imaging using subwavelength apertures without cutoff. Opt Express 24(3):2728–2736PubMedGoogle Scholar
  16. 16.
    Wang G, Zhang J, Zhang B, He T, He Y, Shen J (2016) Photo-excited terahertz switch based on composite metamaterial structure. Opt Commun 374:64–68Google Scholar
  17. 17.
    Fan F, Liu Y, Li J, Wang X-H, Chang S-J (2015) Active terahertz directional coupler based on phase transition photonic crystals. Opt Commun 336:59–66Google Scholar
  18. 18.
    Li X, Zhang J (2016) Design of terahertz metal-dielectric-metal waveguide with microfluidic sensing stub. Opt Commun 361:130–137Google Scholar
  19. 19.
    Li P, Hu F, Wang Z, Jiang W, Chen Y (2017) Design of tunable terahertz bandstop filter based on electrostatically actuated reconfigurable metamaterials. Opt Commun 392:263–267Google Scholar
  20. 20.
    Maier SA, Atwater HA (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98(1):011101Google Scholar
  21. 21.
    Barnes WL (2006) Surface plasmon–polariton length scales: a route to sub-wavelength optics. J Opt A Pure Appl Opt 8(4)Google Scholar
  22. 22.
    Maier SA Plasmonics: fundamentals and applications, Ph.D. Thesis, Department of Physics, University of Bath, UKGoogle Scholar
  23. 23.
    Chen H-T, Lu H, Azad AK, Averitt RD, Gossard AC, Trugman SA, O’Hara JF, Taylor AJ (2008) Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays. Opt Exp 16(11):7641–7648Google Scholar
  24. 24.
    Wang S, Zhao F, Wang X, Qu S, Zhang Y (2014) Comprehensive imaging of terahertz surface plasmon polaritons. Opt Express 22(14):16916–16924PubMedGoogle Scholar
  25. 25.
    Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6(709):749–758Google Scholar
  26. 26.
    Nikitin AY, Guinea F, Martin-Moreno L (2012) Resonant plasmonic effects in periodic graphene antidot arrays. Appl Phys Lett 101(5):151119Google Scholar
  27. 27.
    Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332(6035):1291–1294PubMedGoogle Scholar
  28. 28.
    Poumirol JM, Yu W, Chen X, Berger C, de Heer WA, Smith ML, Ohta T, Pan W, Goerbig MO, Smirnov D, Jiang Z (2013) Magnetoplasmons in quasineutral epitaxial graphene nanoribbons. Phys Rev Lett 110(24):246803PubMedGoogle Scholar
  29. 29.
    Yan H, Li Z, Li X, Zhu W, Avouris P, Xia F (2012) Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene. Nano Lett 12(7):3766–3771PubMedGoogle Scholar
  30. 30.
    Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F (2012) Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol 7:330–334PubMedGoogle Scholar
  31. 31.
    Kaplan D, Recine G, Swaminathan V (2014) Electrically dependent bandgaps in graphene on hexagonal boron nitride. Appl Phys Lett 104(13):133108Google Scholar
  32. 32.
    Yankowitz M, Xue J, LeRoy BJ (2014) Graphene on hexagonal boron nitride. J Phys Condens Matter 26(30):303201PubMedGoogle Scholar
  33. 33.
    Chattrakun K, Huang S, Watanabe K, Taniguchi T, Sandhu A, LeRoy BJ (2013) Gate dependent Raman spectroscopy of graphene on hexagonal boron nitride. J Phys Condens Matter 25(50):505304PubMedGoogle Scholar
  34. 34.
    Uchida Y, Nakandakari S, Kawahara K, Yamasaki S, Mitsuhara M, Ago H (2018) Controlled growth of large-area uniform multilayer hexagonal boron nitride as an effective 2D substrate. ACS Nano 12(6):6236–6244PubMedGoogle Scholar
  35. 35.
    Chang R-J, Wang X, Wang S, Sheng Y, Porter B, Bhaskaran H, Warner JH (2017) Growth of large single-crystalline monolayer hexagonal boron nitride by oxide-assisted chemical vapor deposition. Chem Mater 29:6252–6260Google Scholar
  36. 36.
    Tao J, Wang QJ, Huang XG (2011) All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material. Plasmonics. 6(4):753–759Google Scholar
  37. 37.
    Vasic B, Gaji R (2012) Broadband and subwavelength terahertz modulators using tunable plasmonic crystals with semiconductor rods. J Phys D Appl Phys 45(9):095101Google Scholar
  38. 38.
    Gómez-Díaz JS, Perruisseau-Carrier J (2013) Graphene-based plasmonic switches at near infrared frequencies. Opt Express 21(13):15490–15504PubMedGoogle Scholar
  39. 39.
    Akhlaghi M, Nozhat N, Emami F (2014) Investigating the optical switch using dimer plasmonic nano-rods. IEEE Trans Nanotechnol 13(6)Google Scholar
  40. 40.
    Taheri AN, Kaatuzian H (2015) Numerical investigation of a nano-scale electro-plasmonic switch based on metal-insulator-metal stub filter. Opt Quant Electron 47(2):159–168Google Scholar
  41. 41.
    Fang M, Shi F, Chen Y (2016) Unidirectional all-optical absorption switch based on optical Tamm state in nonlinear plasmonic waveguide. Plasmonics 11(1):197–203Google Scholar
  42. 42.
    Wang B, Zhang X, Garcı’a-Vidal FJ, Yuan X, Teng J (2012) Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays. Phys Rev Lett 109(7):073901PubMedGoogle Scholar
  43. 43.
    Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X (2011) A graphene-based broadband optical modulator. Nature 474:64–67Google Scholar
  44. 44.
    Gu X, Lin I-T, Liu J-M (2013) Extremely confined terahertz surface plasmon-polaritons in graphene-metal structures. Appl Phys Lett 103(7):071103Google Scholar
  45. 45.
    Smith DR, Schultz S (2002) Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B 65(19):195104Google Scholar
  46. 46.
    Smith DR, Vier DC, Koschny T, Soukoulis CM (2005) Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E 71(3):036617Google Scholar
  47. 47.
    Chu H-S, How Gan C (2013) Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays. Appl Phys Lett 102(23):231107Google Scholar
  48. 48.
    Lu H (2015) Plasmonic characteristics in nanoscale graphene resonator-coupled waveguides. Appl Phys B Lasers Opt 118(1):61–67Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Faculty of Electrical and Computer Engineering, The Nano Plasmo-Photonic Research groupTarbiat Modares UniversityTehranIran
  3. 3.Department of Electrical Engineering, Marvdasht BranchIslamic Azad UniversityMarvdashtIran

Personalised recommendations