pp 1–6 | Cite as

A Theoretical Study on the Influence of Carrier Generation on Drain-Source Current of Graphene Nanoscroll Transistors

  • I. S. AmiriEmail author
  • Hossein Mohammadi
  • P. Yupapin


A novel approach is presented in order to study the effects of carrier generation on the drain-source current of graphene nanoscroll field effect transistors (GNSFET). In this method, ionisation carrier concentration is calculated and included in the drain-source current. In addition, a simulation approach based on Monte Carlo is employed in order to calculate ionisation coefficient. Finally, the current is calculated including ionisation and not including ionisation and compared together at different conditions in order to investigate the effect of ionisation. The results show that this mechanism is not ignorable in graphene-based transistors as it was in most cases in silicon transistors. In addition, the breakdown voltage has been calculated analytically and compared with fabrication results of couterparts in silicon technology.


Graphene nanoscroll Modelling Field effect transistor Monte Carlo Carrier generation 



  1. 1.
    Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652–655CrossRefGoogle Scholar
  2. 2.
    Dai H (2001) Carbon nanotubes: synthesis, structure, properties, and applications. In: Topics in applied physics. Springer, BerlinGoogle Scholar
  3. 3.
    Martel R, Schmidt T, Shea HR, Hertel T, Avouris P (1998) Single-and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73(17):2447–2449CrossRefGoogle Scholar
  4. 4.
    Ghadiry M et al (2012) Analysis of a novel full adder designed for implementing in carbone nanotube technology. Journal of Circuits, Systems, and Computers 21(05):1250042CrossRefGoogle Scholar
  5. 5.
    Viculis LM, Mack JJ, Kaner RB (2003) A chemical route to carbon nanoscrolls. Science 299(5611):1361–1361CrossRefGoogle Scholar
  6. 6.
    Khaledian M et al (2014) Carrier statistics and quantum capacitance models of graphene nanoscroll. J Nanomater 2014:101–101CrossRefGoogle Scholar
  7. 7.
    Zhao J, Yang B, Yang Z, Zhang P, Zheng Z, Ren W, Yan X (2014) Facile preparation of large-scale graphene nanoscrolls from graphene oxide sheets by cold quenching in liquid nitrogen. Carbon 79:470–477CrossRefGoogle Scholar
  8. 8.
    Ahmad H, Ghadiry M, Manaf AA (2016) A new approach to study carrier generation in graphene nanoribbons under lateral bias. Mater Express 6(3):283–288CrossRefGoogle Scholar
  9. 9.
    Neto AC et al (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109–162CrossRefGoogle Scholar
  10. 10.
    Khaledian M, Ismail R, Saeidmanesh M, Ghadiry M, Akbari E (2015) Sensitivity modelling of graphene nanoscroll-based NO2 gas sensors. Plasmonics 10(5):1133–1140CrossRefGoogle Scholar
  11. 11.
    Zhong Y, Zhen Z, Zhu H (2017) Graphene: fundamental research and potential applications. FlatChem 4:20–32CrossRefGoogle Scholar
  12. 12.
    Xie X, Ju L, Feng X, Sun Y, Zhou R, Liu K, Fan S, Li Q, Jiang K (2009) Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene. Nano Lett 9(7):2565–2570CrossRefGoogle Scholar
  13. 13.
    Xu Z, Zheng B, Chen J, Gao C (2014) Highly efficient synthesis of neat graphene nanoscrolls from graphene oxide by well-controlled lyophilization. Chem Mater 26(23):6811–6818CrossRefGoogle Scholar
  14. 14.
    Taji S, Karimi A, Ghadiry M, Fotovatikhah F (2015) An analytical approach to calculate power and delay of carbon-based links in on-chip networks. J Comput Theor Nanosci 12(8):1775–1779CrossRefGoogle Scholar
  15. 15.
    Ghadiry M et al (2011) Design and analysis of a new carbon nanotube full adder cell. J Nanomater 2011:36CrossRefGoogle Scholar
  16. 16.
    Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5(7):487–496CrossRefGoogle Scholar
  17. 17.
    Ghadiry M, Nadi M, Saiedmanesh M, Abadi HKF (2014) An analytical approach to study breakdown mechanism in graphene nanoribbon field effect transistors. J Comput Theor Nanosci 11(2):339–343CrossRefGoogle Scholar
  18. 18.
    Saeidmanesh M, Ghadiry MH, Khaledian M, Kiani MJ, Ismail R (2014) Carrier scattering and impact ionization in bilayer graphene. J Comput Electron 13(1):180–185CrossRefGoogle Scholar
  19. 19.
    Fang T et al (2011) High-field transport in two-dimensional graphene. Phys Rev B 84:125450Google Scholar
  20. 20.
    Ghadiry M, Manaf ABA, Nadi M, Rahmani M, Ahmadi MT (2012) Theory of ionization mechanism in graphene nanoribbons. J Comput Theor Nanosci 9(12):2190–2192CrossRefGoogle Scholar
  21. 21.
    Park W-D, Tanioka K (2014) Avalanche multiplication and impact ionization in amorphous selenium. Jpn J Appl Phys 53(3):1347–4065Google Scholar
  22. 22.
    Ghadiry M, Nadi M, Saiedmanesh M, Abadi HKF (2014) An analytical approach to study breakdown mechanism in graphene nanoribbon field effect transistors. J Comput Theor Nanosci 11(2):339–343CrossRefGoogle Scholar
  23. 23.
    Ryzhii V, Ryzhii M, Satou A (2008) Current-voltage characteristics of a graphene-nanoribbon field-effect transistor. J Appl Phys 103:094510CrossRefGoogle Scholar
  24. 24.
    Wang X et al (2008) Room temperature all semiconducting sub-10nm graphene nanoribbon field-effect transistors. Phys Rev Lett 100:206803CrossRefGoogle Scholar
  25. 25.
    Rubel O, Potvin A, Laughton D (2011) Generalized lucky-drift model for impact ionization in semiconductors with disorder. J Phys Condens Matter 23(5):055802CrossRefGoogle Scholar
  26. 26.
    Su V et al (2008) Breakdown behavior of 40-nm PD-SOI NMOS device considering STI-induced mechanical stress effect. IEEE Electron Device Lett 29(6):612–614CrossRefGoogle Scholar
  27. 27.
    Wong H (2000) Drain breakdown in submicron MOSFETs: a review. Microelectron Reliab 40(1):3–15CrossRefGoogle Scholar
  28. 28.
    Sun E et al (1978) Breakdown mechanism in short-channel MOS transistors. In: Electron devices meeting, 1978 International. IEEE.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Computational Optics Research Group, Advanced Institute of Materials ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Department of Electrical Engineering, Faculty of Engineering, Sarvestan BranchIslamic Azad UniversitySarvestanIran

Personalised recommendations