pp 1–6 | Cite as

Tunable Optical Antennas Using Vanadium Dioxide Metal-Insulator Phase Transitions

  • A. TognazziEmail author
  • A. Locatelli
  • M. A. Vincenti
  • C. Giannetti
  • C. De Angelis


Here, we investigate the possibility of exploiting the insulator-to-metal transition in vanadium dioxide (VO2) to tune and optically control the resonances of dipole nanoantennas in the visible near-infrared region. We compare the results obtained in the case of antennas completely made by VO2 with those of previous works and highlight the key role of the substrate to perform dynamical tuning. We also present a highly efficient configuration composed of dipole gold antenna loaded with VO2 and give some general guidelines to optimally exploit phase transitions to tune nanodevices.


Nanoantennas Vanadium dioxide Plasmonics Phase-changing materials 



The authors acknowledge useful discussions with Francesco Banfi, Marco Gandolfi, Luca Carletti, and Davide Rocco.


  1. 1.
    Makarov SV, Zalogina AS, Tajik M, Zuev DA, Rybin MV, Kuchmizhak AA, Juodkazis S, Kivshar Y (2017) Light-induced tuning and reconfiguration of NanophotonicStructures. Laser Photonics Rev 11(5):1700108CrossRefGoogle Scholar
  2. 2.
    Holsteen AL, Raza S, Fan P, Kik PG, Brongersma ML (2017) Purcell effect for active tuning of light scattering from semiconductor optical antennas. Science 358(6369):1407CrossRefGoogle Scholar
  3. 3.
    Basov DN, Averitt RD, Hsieh D (2017) Towards properties on demand in quantum materials. Nat Mater 16:1077 EPCrossRefGoogle Scholar
  4. 4.
    Zheludev NI, Kivshar Y (2012) From metamaterials to metadevices. Nat Mater 11:917CrossRefGoogle Scholar
  5. 5.
    Krasnok MTA, Alù A (2017) Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater Today 21(1):8CrossRefGoogle Scholar
  6. 6.
    Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193CrossRefGoogle Scholar
  7. 7.
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642CrossRefGoogle Scholar
  8. 8.
    Novotny L, van Hulst N (2011) Antennas for light. Nat Photonics 5:83CrossRefGoogle Scholar
  9. 9.
    Yu N, Genevet P, Kats MA, Aieta F, Tetienne J, Capasso F, Gaburro Z (2011) Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334(6054):333CrossRefGoogle Scholar
  10. 10.
    Caldarola M, Albella P, Cortes E, Rahmani M, Roschuk T, Grinblat G, Oulton RF, Bragas AV, Maier SA (2015) Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nat Commun 6:7915 EPCrossRefGoogle Scholar
  11. 11.
    Alessandri I, Lombardi JR (2016) Enhanced Raman scattering with dielectrics. Chem Rev 116(24):14921CrossRefGoogle Scholar
  12. 12.
    Nicholls LH, Rodríguez-fortuno FJ , Nasir ME, Córdova-Castro RM, Olivier N, Wurtz GA, Zayats AV (2017) Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials. Nat Photonics 11(10):628CrossRefGoogle Scholar
  13. 13.
    Miller KJ, Haglund RF, Weiss SM (2018) Optical phase change materials in integrated silicon photonic devices: review. Opt Mater Express 8(8):2415CrossRefGoogle Scholar
  14. 14.
    Wang YYH, Wang L (2014) Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer. Appl Phys Lett 105:071907CrossRefGoogle Scholar
  15. 15.
    Ou JY, Plum E, Jiang L, Zheludev NI (2011) Reconfigurable photonic metamaterials. Nano Lett 11(5):2142CrossRefGoogle Scholar
  16. 16.
    Emani NK, Chung TF, Ni X, Kildishev AV, Chen YP, Boltasseva A (2012) Electrically tunable damping of plasmonic resonances with graphene. Nano Lett 12(10):5202CrossRefGoogle Scholar
  17. 17.
    Zhu Z, Evans PG, Haglund RF Jr, Valentine JG (2017) Dynamically reconfigurable metadevice employing nanostructured phase-change materials. Nano Lett 17:4881CrossRefGoogle Scholar
  18. 18.
    Zhou Y, Chen X, Ko C, Yang Z, Mouli C, Ramanathan S (2013) Voltage-triggered ultrafast phase transition in vanadium dioxide switches. IEEE Electron Device Lett 34(2):220CrossRefGoogle Scholar
  19. 19.
    Chen J, Yuan J, Zhang Q, Ge H, Tang C, Liu Y, Guo B (2018) Dielectric waveguide-enhanced localized surface plasmon resonance refractive index sensing. Optical Materials Espress 8(2):342CrossRefGoogle Scholar
  20. 20.
    Chen J, Nie H, Zha T, Mao P, Tang C, Shen X, Park G (2018) Optical magnetic field enhancement by strong coupling in metamaterials. J Light Technol 36(13):2791CrossRefGoogle Scholar
  21. 21.
    Chen L, Wei Y, Zang X, Zhu Y, Zhuang S (2016) Excitation of dark multipolar plasmonic resonances at terahertz frequencies. Sci Rep 6:22027 EPCrossRefGoogle Scholar
  22. 22.
    Chen J, Zhang Q, Peng C, Tang C, Shen X, Deng L, Park G (2018) Optical cavity-enhanced localized surface plasmon resonance for high-quality sensing. IEEE Photon Technol Lett 30(8):728CrossRefGoogle Scholar
  23. 23.
    Chen J, Fan W, Zhang T, Tang C, Chen X, Wu J, Li D, Yu Y (2017) Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing. Opt Express 25(4):3675CrossRefGoogle Scholar
  24. 24.
    Chen J, Zha T, Zhang T, Tang C, Yu Y, Liu Y, Zhang L (2017) Enhanced magnetic fields at optical frequency by diffraction coupling of magnetic resonances in lifted metamaterials. J Light Technol 35(1):71CrossRefGoogle Scholar
  25. 25.
    Chen J, Nie H, Peng C, Qi S, Tang C, Zhang Y, Wang L, Park GS (2018) Enhancing the magnetic plasmon resonance of three-dimensional optical metamaterials via strong coupling for high-sensitivity sensing. J Light Technol 36(16):3481CrossRefGoogle Scholar
  26. 26.
    Chen J, Tang C, Mao P, Peng C, Gao D, Yu Y, Wang Q, Zhang L (2016) Surface-plasmon-polaritons-assisted enhanced magnetic response at optical frequencies in metamaterials. IEEE Photonics J 8(1):1Google Scholar
  27. 27.
    Chen L, Xu N, Singh L, Cui T, Singh R, Zhu Y, Zhang W (2017) Defect-induced Fano resonances in corrugated plasmonic metamaterials. Advanced Optical Materials 5(8):1600960CrossRefGoogle Scholar
  28. 28.
    Muskens OL, Bergamini L, Wang Y, Gaskell JM, Zabala N, de Groot C, Sheel DW, Aizpurua J (2016) Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide. Light: Science &Amp; Applications 5:e16173 EPCrossRefGoogle Scholar
  29. 29.
    Qazilbash MM, Brehm M, Chae BG, Ho PC, Andreev GO, Kim BJ, Yun SJ, Balatsky AV, Maple MB, Keilmann F, Kim HT, Basov DN (2007) Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318(5857):1750CrossRefGoogle Scholar
  30. 30.
    Cilento F, Giannetti C, Ferrini G, dal conte S, Sala T, Coslovich G, Rini M, Cavalleri A, Parmigiani F (2010) Ultrafast insulator-to-metal phase transition as a switch to measure the spectrogram of a supercontinuum light pulse. Appl Phys Lett 96:021102CrossRefGoogle Scholar
  31. 31.
    Appavoo K, Haglund RF Jr (2014) Polarization selective phase-change nanomodulator. Sci Rep 4:6771CrossRefGoogle Scholar
  32. 32.
    Locatelli A, De angelis C, Modotto D, Boscolo S, Sacchetto F, Midrio M, Capobianco AD, Pigozzo FM, Someda CG (2009) Modeling of enhanced field confinement and scattering by optical wire antennas. Optics Express 17(19):16792CrossRefGoogle Scholar
  33. 33.
    Olmon RL, Slovick B, Johnson TW, Shelton D, Oh SH, Boreman GD, Rashke MB (2012) Optical dielectric function of gold. Physical Review B 86(23):235147CrossRefGoogle Scholar
  34. 34.
    Kana Kana JB, Ndjaka JM, Vignaud G, Gibaud A, Maaza M (2011) Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry. Opt Commun 284:807CrossRefGoogle Scholar
  35. 35.
    Park JB, Lee IM, Lee SY, Kim K, Choi D, Song EY, Lee B (2013) Tunable subwavelength hot spot of dipole nanostructure based on VO2 phase transition. Opt Express 21(13):15205CrossRefGoogle Scholar
  36. 36.
    Alù A, Engheta N (2008) Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. Nat Photonics 2:307CrossRefGoogle Scholar
  37. 37.
    Engheta N, Salandrino A, Alù A (2005) Circuit elements at optical frequencies: nano-inductors, nano- capacitors and nano-resistors. Phys Rev Lett 95:095504CrossRefGoogle Scholar
  38. 38.
    Large N, Abb M, Aizpurua J, Muskens OL (2010) Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches. Nano Lett 10(5):1741CrossRefGoogle Scholar
  39. 39.
    Novotny L (2007) Effective wavelength scaling for optical antennas. Physical Review Letters 96(26):266802CrossRefGoogle Scholar
  40. 40.
    Alu A, Engheta N (2008) Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. Phys Rev Lett 101(4):043901CrossRefGoogle Scholar
  41. 41.
    De Ceglia D, Vincenti MA, De Angelis C, Locatelli A, Haus JW, Scalora M (2015) Role of antenna modes and field enhancement in second harmonic generation from dipole nanoantennas. Opt Express 23(2):1715CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria dell’InformazioneUniversità degli Studi di BresciaBresciaItaly
  2. 2.Istituto Nazionale di Ottica (INO)Consiglio Nazionale delle Ricerche (CNR)BresciaItaly
  3. 3.I-LAMP & Dipartimento di FisicaUniversità Cattolica del Sacro CuoreBresciaItaly

Personalised recommendations