pp 1–9 | Cite as

Engineering Electromagnetic Wave Propagation in Periodically Layered Gyromagnetic Metamaterials with an External Magnetic Field

  • Xiongshuo Yan
  • Guanghui WangEmail author
  • Dongmei Deng


Tunable transmission characteristics of electromagnetic waves in periodically layered metamaterials (PLMMs), constructed by alternating dielectric layer and gyromagnetic layer such as yttrium-iron-garnet (YIG), are investigated through an external magnetic field. Based on transfer matrix method (TMM) and effective medium theory (EMT), we compare the dispersion curves of TE waves propagating in the PLMMs, and obtain the effective permeability and permittivity tensors of the homogenized gyromagnetic PLMMs by expanding the exact dispersion relation in long-wavelength limit. Then, we calculate some propagating parameters when TE waves incident on the PLMMs by EMT in detail. Numerical results show that the refraction state of TE waves in the PLMMs can be dynamically changed between positive refraction state and cutoff state by controlling the external magnetic field. These exotic properties of gyromagnetic PLMMs may have wide potential applications in many fields such as sub-wavelength all-optical switches and wave cutoff devices.


Multilayers Metamaterials Optical switch Effective medium theory 


Funding Information

This work was supported by the Natural Science Foundation of Guangdong Province, China (2016A030313439, 2018A030313480), by GDUPS (2017), and by Key Program for Guangdong NSF of China (2017B030311003), and by the Science and Technology Program of Guangzhou City, China (201707010403).


  1. 1.
    Tumkur T, Zhu G, Black P, Barnakov YA (2011) Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial. Appl Phys Lett 99(15):151115CrossRefGoogle Scholar
  2. 2.
    Iorsh I, Poddubny A, Orlov A, Belov P, Kivshar YS (2012) Spontaneous emission enhancement in metal-dielectric metamaterials. Phys Lett A 376(3):185–187CrossRefGoogle Scholar
  3. 3.
    Silveirinha MG, Belov PA, Simovski CR (2007) Subwavelength imaging at infrared frequencies using an array of metallic nanorods. Phys Rev B 75(3):035108CrossRefGoogle Scholar
  4. 4.
    Chebykin AV, Orlov AA, Vozianova AV, Maslovski SI, Kivshar YS, Belov PA (2011) Nonlocal effective medium model for multilayered metal-dielectric metamaterials. Phys Rev B 84(11): 115438CrossRefGoogle Scholar
  5. 5.
    Chern RL (2013) Spatial dispersion and nonlocal effective permittivity for periodic layered metamaterials. Opt Express 21(14): 16514–16527CrossRefGoogle Scholar
  6. 6.
    Orlov AA, Voroshilov PM, Belov PA, Kivshar YS (2011) Engineered optical nonlocality in nanostructured metamaterials. Phys Rev B 84(4):045424CrossRefGoogle Scholar
  7. 7.
    Han D, Chern RL (2014) Nonlocal optical properties in periodic lattice of graphene layers. Opt Express 22(4):4817–4829CrossRefGoogle Scholar
  8. 8.
    Alù A, Argyropoulos C, Monticone F, Estakhri NM (2013) Negative refraction, gain and nonlinear effects in hyperbolic metamaterials. Opt Express 21(12):15037–15047CrossRefGoogle Scholar
  9. 9.
    Li T, Liu H, Wang FM, Dong ZG, Zhu SN, Zhang X (2006) Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on nega- tive refraction transmission. Opt Express 14(23):11155–11163CrossRefGoogle Scholar
  10. 10.
    Rakhmanov AL, Yampol’Skii VA, Fan JA, Capasso F, Nori F (2010) Layered superconductors as negative-refractive-index metamaterials. Phys Rev B 81(7):075101CrossRefGoogle Scholar
  11. 11.
    Scalora M, Mattiucci N, D’Aguanno G, Larciprete M, Bloemer MJ (2006) Nonlinear pulse propagation in one-dimensional metal-dielectric multilayer stacks: ultrawide bandwidth optical limiting. Phys Rev E 73(1):016603CrossRefGoogle Scholar
  12. 12.
    Poddubny A, Iorsh I, Belov P, Kivshar Y (2013) Hyperbolic metamaterials. Nat Photonics 7(12):948CrossRefGoogle Scholar
  13. 13.
    Kim J, Drachev VP, Jacob Z, Naik GV, Boltasseva A, Narimanov EE, Shalaev VM (2012) Improving the radiative decay rate for dye molecules with hyperbolic metamaterials. Opt Express 20(7):8100–8116CrossRefGoogle Scholar
  14. 14.
    Yang X, Yao J, Rho J, Yin X, Zhang X (2012) Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws. Nat Photonics 6(7):450CrossRefGoogle Scholar
  15. 15.
    Savelev RS, Shadrivov IV, Belov PA, Rosanov NN, Fedorov SV, Sukhorukov AA, Kivshar YS (2013) Loss compensation in metal-dielectric layered metamaterials. Phys Rev B 87(11):115139CrossRefGoogle Scholar
  16. 16.
    Tumkur TU, Gu L, Kitur JK, Narimanov EE, Noginov MA (2012) Control of absorption with hyperbolic metamaterials. Appl Phys Lett 100(16):161103CrossRefGoogle Scholar
  17. 17.
    Rho J, Ye Z, Xiong Y, Yin X, Liu Z, Choi H, Bartal G, Zhang X (2010) Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nat Commun 1(9):143CrossRefGoogle Scholar
  18. 18.
    Ferrari L, Wu C, Lepage D, Zhang X, Liu Z (2015) Hyperbolic metamaterials and their applications. Prog Quant Eletron 40:1–40CrossRefGoogle Scholar
  19. 19.
    Li W, Liu Z, Zhang X, Jiang X (2012) Switchable hyperbolic metamaterials with magnetic control. Appl Phys Lett 100(16):161108CrossRefGoogle Scholar
  20. 20.
    Boltasseva A, Atwater HA (2011) Low-loss plasmonic metamaterials. Science 331(6015):290–291CrossRefGoogle Scholar
  21. 21.
    Liu S, Du J, Lin Z, Wu R, Chui ST (2008) Formation of robust and completely tunable resonant photonic band gaps. Phys Rev B 78(15):155101CrossRefGoogle Scholar
  22. 22.
    Wang Z, Chong YD, Joannopoulos JD, Soljaić M (2007) Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys Rev Lett 100(1):013905CrossRefGoogle Scholar
  23. 23.
    Pozar DM (2009) Microwave engineering[M]. WileyGoogle Scholar
  24. 24.
    Das J, Song YY, Mo N, Krivosik P, Patton CE (2010) Electric-field-tunable low loss multiferroic ferrimagnetic-ferroelectric heterostructures. Adv Mater 21(20):2045–2049CrossRefGoogle Scholar
  25. 25.
    Chern RL, Han D, Zhang ZQ, Chan CT (2014) Additional waves in the graphene layered medium. Opt Express 22(26):31677–31690CrossRefGoogle Scholar
  26. 26.
    Born M, Wolf E (2013) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light[M]. ElsevierGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Guangzhou Key Laboratory for Special Fiber Photonic DevicesSouth China Normal UniversityGuangzhouPeople’s Republic of China
  2. 2.Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and DevicesSouth China Normal UniversityGuangzhouPeople’s Republic of China

Personalised recommendations