pp 1–9 | Cite as

Spectrally Selective Shielding Material Based on Graphene Photonic Crystal

  • Xun Xie
  • Yu-Jie Liu
  • Jiong-Ju Hao
  • Da-Jie Song
  • Hong-Wei YangEmail author


A novel graphene photonic crystal structure is proposed and designed in this paper; each unit period is composed of graphene, metal, and magnesium fluoride. We investigate the optical properties of this structure in the visible to near-infrared range by means of finite-difference time-domain method. We examined the influence of structural parameters (metal material, thickness, period number, etc.) on the optical response of the structure and found that it can be transparent in visible range and can shield most of the near-infrared rays. As a result, the proposed graphene photonic structure enables potential applications in selective near-infrared shielding material.


Spectrally selective shielding Graphene Photonic crystal Finite-difference time-domain method 


Funding information

This work is supported by the excellent project Funds of Nanjing Agricultural University (Grant No. JF17080123).


  1. 1.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669Google Scholar
  2. 2.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191Google Scholar
  3. 3.
    Furchi M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H, Klang P, Andrews A, Schrenk W, Strasser G, Mueller T (2012) Microcavity-integrated graphene photodetector. Nano Lett 12:2773–2777Google Scholar
  4. 4.
    Li X, Zhang Q, Chen X, Min G (2013) Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording. Sci Rep 3:2819–2814Google Scholar
  5. 5.
    Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109–162Google Scholar
  6. 6.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200Google Scholar
  7. 7.
    Kuzmenko AB, van Heumen E, Carbone F, van der Marel D (2008) Universal optical conductance of graphite. Phys Rev Lett 100(11):117401–117404Google Scholar
  8. 8.
    Li X, Ren H, Xi C, Liu J, Li Q, Li C, Xue G, Jia J, Cao L, Sahu A, B H, Wang Y, Jin G, Min G (2015) Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat Commun 6:6984–6987Google Scholar
  9. 9.
    Liao L, Lin Y-C, Bao M, Cheng R, Bai J, Liu Y, Yongquan Q, Kang LW, Huang Y, Duan X (2010) High speed graphene transistors with a self-aligned nanowire gate. Nature 467:305–308Google Scholar
  10. 10.
    Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent, and flexible electronic material. Nat Nanotechnol 3(5):270–274Google Scholar
  11. 11.
    Wang S, Ouyang X, Feng Z, Cao Y, Gu M, Li X (2018) Diffractive photonic applications mediated by laser reduced graphene oxides. Opto-Electron Adv 1:170002–170008Google Scholar
  12. 12.
    Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332:1291–1294Google Scholar
  13. 13.
    Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6:749–758Google Scholar
  14. 14.
    Li X, Lan T-H, Tien C-H, Gu M (2012) Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam. Nat Commun 3:998–996Google Scholar
  15. 15.
    John S (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58(23):2486–2489Google Scholar
  16. 16.
    Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58(20):2059–2062Google Scholar
  17. 17.
    Kaipa CSR, Yakovlev AB, Hanson GW, Padooru YR, Medina F, Mesa F (2012) Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies. Phys Rev B 85(24):245407–245406Google Scholar
  18. 18.
    El-Naggar SA (2015) Tunable terahertz omnidirectional photonic gap in one dimensional graphene-based photonic crystals. Opt Quant Electron 47(7):1627–1636Google Scholar
  19. 19.
    Liu J-T, Liu N-H, Li J, Li XJ, Huang J-H (2012) Enhanced absorption of graphene with one-dimensional photonic crystal. Appl Phys Lett 101(5):052104–052103Google Scholar
  20. 20.
    Vincenti MA, de Ceglia D, Grande M, D’Orazio A, Scalora M (2013) Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect. Opt Lett 38(18):3550–3553Google Scholar
  21. 21.
    Kong X-K, Shi X-Z, Mo J-J, Fang Y-T, Chen X-L, Liu S-B (2017) Tunable multichannel absorber composed of graphene and doped periodic structures. Opt Commun 383:391–396Google Scholar
  22. 22.
    Liu Y-J, Xie X, Xie L, Yang Z-K, Yang H-W (2016) Dual-band absorption characteristics of one-dimensional photonic crystal with graphene-based defect. Optik 127(9):3945–3948Google Scholar
  23. 23.
    Zhaoxian S, Yin J, Zhao X (2015) Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structures. Opt Express 23(2):1679–1690Google Scholar
  24. 24.
    Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103(6):064302–064308Google Scholar
  25. 25.
    Yee KS (1966) Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans Antennas Propag 14(3):302–307Google Scholar
  26. 26.
    Taflove A, Brodwin ME (1975) Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations. IEEE Trans Microwave Theory and Techniques 23(8):623–630Google Scholar
  27. 27.
    Zhang H-F, Liu S-B (2016) Analyzing the photonic band gaps in two-dimensional plasma photonic crystals with fractal Sierpinski gasket structure based on the Monte Carlo method. AIP Adv 6(8):085116–085113Google Scholar
  28. 28.
    Chen Y-L, Fang Y-T (2008) Study of superluminal-pulse propagation in one-dimensional photonic crystals by the FDTD method. J Russian Laser Res 29(2):176–183Google Scholar
  29. 29.
    Wang S, Liu X, Zhu Y (2015) Optical transformation design of waveguide bends and splitter in photonic crystals. Opt Commun 355(1):80–84Google Scholar
  30. 30.
    Xu J, Li M, Chen R (2017) Space mapping optimisation of 2D array elements arrangement to reduce the radar cross-scattering. IET Microwaves Antennas and Propagation 11(11):1578–1582Google Scholar
  31. 31.
    Zhang HH, Fan ZH, Ding D, Chen R (2013) Radar target recognition based on multi-directional E-pulse technique. IEEE Trans Antennas Propag 61(11):5838–5843Google Scholar
  32. 32.
    Ding D, Jin S, Hu XQ (2014) Multiple-directions asymptotic phase basis functions for efficient analysis of scattering from electrically large objects. IET Microwaves Antennas and Propagation 8(7):482–490Google Scholar
  33. 33.
    Yang L, Li L, Kong W, Zhen Z (2013) Metal nanoparticles influence on light absorbed power of thin-film solar cell with periodic structure. Optik 124(14):1921–1925Google Scholar
  34. 34.
    Cao BZ, Xu F (2008) Analysis for new types of waveguide with Fourier’s expansion-differential method. Int J Infrared Millimeter Waves 29:240–248Google Scholar
  35. 35.
    Chen J, Yong B, Ren L, Wang W, Chen B, Lin J, Yu Z, Li N (2016) Using a Kalman filter to assimilate TRMM-based real-time satellite precipitation estimates over Jinghe Basin, China. Remote Sens 8(11):899–818Google Scholar
  36. 36.
    De-biao G, Wu YL, Zhu X-q (2003) Shift operator method applied for dispersive medium in FDTD analysis (in Chinese). Chin J Radio Sci 18(4):359–363Google Scholar
  37. 37.
    Yang H-W, Ru-Shan C, Zhang Y (2006) SO-FDTD method and its application to the calculation of electromagnetic wave reflection coefficients of plasma (in Chinese). Acta Phys Sin 55(7):3464–3469Google Scholar
  38. 38.
    Ordal MA, Bell RJ, Alexander RW Jr, Long LL, Querry MR (1985) Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl Opt 24(24):4493–4499Google Scholar
  39. 39.
    Song K, Quanhong F, Zhao X (2011) U-shaped multi-band negative-index bulk metamaterials with low loss at visible frequencies. Phys Scr 84(3):035402–035406Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xun Xie
    • 1
  • Yu-Jie Liu
    • 1
  • Jiong-Ju Hao
    • 1
  • Da-Jie Song
    • 1
    • 2
  • Hong-Wei Yang
    • 1
    Email author
  1. 1.Department of Physics, College of ScienceNanjing Agricultural UniversityNanjingPeople’s Republic of China
  2. 2.School of Computer and Information EngineeringChuzhou UniversityChuzhouPeople’s Republic of China

Personalised recommendations