Advertisement

Plasmonics

pp 1–10 | Cite as

High-Performance Label-Free Near-Infrared SPR Sensor for Wide Range of Gases and Biomolecules Based on Graphene-Gold Grating

  • Zeynab Sadeghi
  • Hossein ShirkaniEmail author
Article
  • 20 Downloads

Abstract

Due to the emergent need of identifying biomolecules at very low densities to diagnose illnesses, as well as detect dangerous gases for health, early on, designing a high-quality sensor with simple structure is one of the most important targets for the researchers. Because of this issue, a graphene-gold grating surface plasmon resonance (SPR) sensor with excellent performance has been proposed. The sensitivity of the proposed sensor is calculated by the wavelength peak shift of the extinction curve, which is due to changes in the refractive index of the sensing medium which are, in turn, due to changes in the density of the identified molecule. Two modes of plasmon have been created in the near-infrared region, and both of them had very good characteristics, including sensitivity and high quality. By optimizing the structure and characteristics of the incident light beam, the highest sensitivity 1100 nm/RIU and the quality factor 3929 for the first mode (mode 1) and the notable sensitivity 1180 nm/RIU and the quality factor 9833 were obtained for the second mode (mode 2). The label-free SPR proposed sensor can, by measuring the refractive index, detect changes in the concentration of a wide range of materials including gases such as most alloys, and biomolecules such as hemoglobin, breast cancer, and leukemia, and generally materials with a refractive index from 1.000 to 1.600, up to a precision of 0.0001.

Keywords

Refractive index sensor SPR sensor Graphene-gold grating Near-infrared Biosensor 

Notes

References

  1. 1.
    Minamiki T, Minami T, Kurita R, Niwa O, Wakida S-i, Fukuda K, Kumaki D, Tokito S (2014) Accurate and reproducible detection of proteins in water using an extended-gate type organic transistor biosensor. Appl Phys Lett 104(24):243703Google Scholar
  2. 2.
    Matsui J, Akamatsu K, Hara N, Miyoshi D, Nawafune H, Tamaki K, Sugimoto N (2005) SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles. Anal Chem 77(13):4282–4285Google Scholar
  3. 3.
    Liang W, Huang Y, Xu Y, Lee RK, Yariv A (2005) Highly sensitive fiber Bragg grating refractive index sensors. Appl Phys Lett 86(15):151122Google Scholar
  4. 4.
    Velázquez-González JS, Monzón-Hernández D, Moreno-Hernández D, Martínez-Piñón F, Hernández-Romano I (2017) Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor. Sensors Actuators B Chem 242:912–920Google Scholar
  5. 5.
    Liedberg B, Lundström I, Stenberg E (1993) Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sensors Actuators B Chem 11(1–3):63–72Google Scholar
  6. 6.
    Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377(3):528–539Google Scholar
  7. 7.
    Matsubara K, Kawata S, Minami S (1988) Optical chemical sensor based on surface plasmon measurement. Appl Opt 27(6):1160–1163Google Scholar
  8. 8.
    Attridge JW, Daniels PB, Deacon JK, Robinson GA, Davidson GP (1991) Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay. Biosens Bioelectron 6(3):201–214Google Scholar
  9. 9.
    Homola Jiřı́, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors. Sensors Actuators B Chem 54(1–2):3–15Google Scholar
  10. 10.
    Mishra SK, Bhardwaj S, Gupta BD (2015) Surface plasmon resonance-based fiber optic sensor for the detection of low concentrations of ammonia gas. IEEE Sensors J 15(2):1235–1239Google Scholar
  11. 11.
    Liedberg B, Nylander C, Lunström I (1983) Surface plasmon resonance for gas detection and biosensing. Sensors Actuators 4:299–304Google Scholar
  12. 12.
    Liedberg B, Nylander C, Lundström I (1995) Biosensing with surface plasmon resonance—how it all started. Biosens Bioelectron 10(8):i–ixGoogle Scholar
  13. 13.
    Goerbig MO (2011) Electronic properties of graphene in a strong magnetic field. Rev Mod Phys 83(4):1193–1243Google Scholar
  14. 14.
    Nilsson J, Neto AHC, Guinea F, Peres NMR (2006) Electronic properties of graphene multilayers. Phys Rev Lett 97(26):266801Google Scholar
  15. 15.
    Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109–162Google Scholar
  16. 16.
    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. science 321(5887):385–388Google Scholar
  17. 17.
    Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10(8):569–581Google Scholar
  18. 18.
    Kuzmenko AB, van Heumen E, Carbone F, van der Marel D (2008) Universal optical conductance of graphite. Phys Rev Lett 100(11):117401Google Scholar
  19. 19.
    Falkovsky, L. A. Optical properties of graphene. In: Journal of Physics: Conference Series. IOP Publishing, 2008. p. 012004Google Scholar
  20. 20.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. science 306(5696):666–669Google Scholar
  21. 21.
    Chen Y, Dong J, Liu T, Zhu Q, Chen W (2016) Refractive index sensing performance analysis of photonic crystal containing graphene based on optical Tamm state. Mod Phys Lett B 30 (04):1650030Google Scholar
  22. 22.
    Yoon HJ, Jun DH, Yang JH, Zhou Z, Yang SS, Cheng MM-C (2011) Carbon dioxide gas sensor using a graphene sheet. Sensors Actuators B Chem 157(1):310–313Google Scholar
  23. 23.
    Wu L, Chu HS, Koh WS, Li EP (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18(14):14395Google Scholar
  24. 24.
    Li W, Geng X, Guo Y, Rong J, Gong Y, Wu L, Zhang X, Li P, Xu J, Cheng G, Sun M, Liu L (2011) Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection. ACS Nano 5(9):6955–6961Google Scholar
  25. 25.
    Kulkarni GS, Reddy K, Zhong Z, Fan X (2014) Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection. Nat Commun 5(1).  https://doi.org/10.1038/ncomms5376
  26. 26.
    Fan Y, Wei Z, Zhang Z, Li H (2013) Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators. Opt Lett 38(24):5410–5413Google Scholar
  27. 27.
    Fei Z, Rodin AS, Andreev GO, Bao W, McLeod AS, Wagner M, Zhang LM, Zhao Z, Thiemens M, Dominguez G, Fogler MM, Neto AHC, Lau CN, Keilmann F, Basov DN (2012) Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487(7405):82–85Google Scholar
  28. 28.
    Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Zurutuza Elorza A, Camara N, de Abajo FJG, Hillenbrand R, Koppens FHL (2012) Optical nano-imaging of gate-tunable graphene plasmons. Nature 487(7405):77–81Google Scholar
  29. 29.
    Woessner A, Lundeberg MB, Gao Y, Principi A, Alonso-González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens FHL (2015) Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat Mater 14(4):421–425Google Scholar
  30. 30.
    Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F (2012) Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol 7(5):330–334Google Scholar
  31. 31.
    Luo X, Qiu T, Lu W, Ni Z (2013) Plasmons in graphene: recent progress and applications. Mater Sci Eng R Rep 74(11):351–376Google Scholar
  32. 32.
    Yoon KH, Shuler ML, Kim SJ (2006) Design optimization of nano-grating surface plasmon resonance sensors. Opt Express 14(11):4842–4849Google Scholar
  33. 33.
    Maier, Stefan Alexander. Plasmonics: fundamentals and applications. Springer Science & Business Media, 2007Google Scholar
  34. 34.
    Zhao H, Brown PH, Schuck P (2011) On the distribution of protein refractive index increments. Biophys J 100(9):2309–2317Google Scholar
  35. 35.
    Cunningham B, Lin B, Qiu J, Li P, Pepper J, Hugh B (2002) A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions. Sensors Actuators B Chem 85(3):219–226Google Scholar
  36. 36.
    Zhao M, Nolte D, Cho W, Regnier F, Varma M, Lawrence G, Pasqua J (2006) High-speed interferometric detection of label-free immunoassays on the biological compact disc. Clin Chem 52(11):2135–2140Google Scholar
  37. 37.
    Giannios P et al (2016) Visible to near-infrared refractive properties of freshly-excised human-liver tissues: marking hepatic malignancies. Sci Rep 6:27910Google Scholar
  38. 38.
    Ding H, Lu JQ, Jacobs KM, Hu X-H (2005) Determination of refractive indices of porcine skin tissues and intralipid at eight wavelengths between 325 and 1557 nm. JOSA A 22(6):1151–1157Google Scholar
  39. 39.
    Choi WJ, Jeon DI, Ahn S-G, Yoon J-H, Kim S, Lee BH (2010) Full-field optical coherence microscopy for identifying live cancer cells by quantitative measurement of refractive index distribution. Opt Express 18(22):23285–23295Google Scholar
  40. 40.
    Liang XJ, Liu AQ, Lim CS, Ayi TC, Yap PH (2007) Determining refractive index of single living cell using an integrated microchip. Sensors Actuators A Phys 133(2):349–354Google Scholar
  41. 41.
    Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297Google Scholar
  42. 42.
    Chen Y, Li X, Zhou H, Xie Q, Hong X, Geng Y (2017) Effects of incident light modes and non-uniform sensing layers on fiber-optic sensors based on surface plasmon resonance. Plasmonics 12(3):707–715Google Scholar
  43. 43.
    Diaz-Valencia BF et al (2017) Enhanced transverse magneto-optical Kerr effect in magnetoplasmonic crystals for the design of highly sensitive plasmonic (bio) sensing platforms. ACS Omega 2(11):7682–7685Google Scholar
  44. 44.
    Li R, Wu D, Liu Y, Yu L, Yu Z, Ye H (2017) Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating. Nanoscale Res Lett 12(1):1Google Scholar
  45. 45.
    Nakayama T, Sato K, Matsumi Y, Imamura T, Yamazaki A, Uchiyama A (2013) Wavelength and NOx dependent complex refractive index of SOAs generated from the photooxidation of toluene. Atmos Chem Phys 13(2):531–545Google Scholar
  46. 46.
    Michels A, Hamers J (1937) The effect of pressure on the refractive index of CO2: the Lorentz-Lorenz formula. Physica 4(10):995–1006Google Scholar
  47. 47.
    Cui S, Pu H, Wells SA, Wen Z, Mao S, Chang J, Hersam MC, Chen J (2015) Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nat Commun 6:8632Google Scholar
  48. 48.
    Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M (2003) Carbon nanotube sensors for gas and organic vapor detection. Nano Lett 3(7):929–933Google Scholar
  49. 49.
    Zhernovaya O, Sydoruk O, Tuchin V, Douplik A (2011) The refractive index of human hemoglobin in the visible range. Phys Med Biol 56(13):4013–4021Google Scholar
  50. 50.
    Yamaguchi S, Fukushi Y, Kubota O, Itsuji T, Ouchi T, Yamamoto S (2016) Brain tumor imaging of rat fresh tissue using terahertz spectroscopy. Sci Rep 6:30124Google Scholar
  51. 51.
    Fitzgerald AJ, Pickwell-MacPherson E, Wallace VP (2014) Use of finite difference time domain simulations and Debye theory for modelling the terahertz reflection response of normal and tumour breast tissue. PLoS One 9(7):e99291Google Scholar
  52. 52.
    Curl CL et al (2005) Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy. Cytometry A 65(1):88–92Google Scholar
  53. 53.
    Song WZ, Zhang XM, Liu AQ, Lim CS, Yap PH, Hosseini HMM (2006) Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity. Appl Phys Lett 89(20):203901Google Scholar
  54. 54.
    Rappaz B, Marquet P, Cuche E, Emery Y, Depeursinge C, Magistretti PJ (2005) Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy. Opt Express 13(23):9361–9373Google Scholar
  55. 55.
    Simmons AC (1978) The refractive index and Lorentz-Lorenz functions of propane, nitrogen and carbon-dioxide in the spectral range 15803–22002 cm−1 and at 944 cm−1. Opt Commun 25(2):211–214Google Scholar
  56. 56.
    Wu L, Wang Q, Ruan B, Zhu J, You Q, Dai X, Xiang Y (2018) High-performance Lossy-mode resonance sensor based on few-layer black phosphorus. J Phys Chem C 122(13):7368–7373Google Scholar
  57. 57.
    Yuan Y, Yu X, Ouyang Q, Shao Y, Song J, Qu J, Yong K-T (2018) Highly anisotropic black phosphorous-graphene hybrid architecture for ultrassensitive plasmonic biosensing: theoretical insight. 2D Materials 5(2):025015Google Scholar
  58. 58.
    Cai D, Lu Y, Lin K, Wang P, Ming H (2008) Improving the sensitivity of SPR sensors based on gratings by double-dips method (DDM). Opt xExpress 16(19):14,597–14,602Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics DepartmentPersian Gulf UniversityBushehrIran

Personalised recommendations