pp 1–16 | Cite as

Design and Optimization of Open-cladded Plasmonic Waveguides for CMOS Integration on Si3N4 Platform

  • E. ChatzianagnostouEmail author
  • D. Ketzaki
  • G. Dabos
  • D. Tsiokos
  • J.-C. Weeber
  • A. Miliou


Herein, we present a design analysis and optimization of open-cladded plasmonic waveguides on a Si3N4 photonic waveguide platform targeting CMOS-compatible manufacturing. For this purpose, two design approaches have been followed aiming to efficiently transfer light from the hosting photonic platform to the plasmonic waveguide and vice versa: (i) an in-plane, end-fire coupling configuration based on a thin-film plasmonic structure and (ii) an out-of-plane directional coupling scheme based on a hybrid slot waveguide. A comprehensive numerical study has been conducted, initially deploying gold as the reference metal material for validating the numerical models with already published experimental results, and then aluminum and copper have been investigated for CMOS manufacturing revealing similar performance. To further enhance coupling efficiency from the photonic to the plasmonic part, implementation of plasmonic tapering schemes was examined. After thorough investigation, plasmo-photonic structures with coupling losses per single interface in the order of 1 dB or even in the sub-dB level are proposed, which additionally exhibit increased tolerance to deviations of critical geometrical parameters and enable CMOS-compatible manufacturing.


CMOS metals Photonic integrated circuits Plasmonics Silicon nitride Surface waves 



This work is supported by the European H2020-EU.2.1.1 project PlasmoFab (Contract No. 688166).


  1. 1.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  2. 2.
    Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91CrossRefGoogle Scholar
  3. 3.
    Delacour C, Blaize S, Grosse P, Fedeli JM, Bruyant A, Salas-Montiel R, Lerondel G, Chelnokov A (2010) Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal−oxide−silicon nanophotonics. Nano Lett 10(8):2922–2926CrossRefGoogle Scholar
  4. 4.
    Li Q, Qiu M (2010) Structurally-tolerant vertical directional coupling between metal-insulator-metal plasmonic waveguide and silicon dielectric waveguide. Opt Express 18(15):15531–15543CrossRefGoogle Scholar
  5. 5.
    Melikyan A, Kohl M, Sommer M, Koos C, Freude W, Leuthold J (2014) Photonic-to-plasmonic mode converter. Opt Lett 39(12):3488–3491CrossRefGoogle Scholar
  6. 6.
    Zhu S, Liow T, Lo G, Kwong D Fully (2011) CMOS compatible subwavelength plasmonic slot waveguides for Si electronic-photonic integrated circuits. Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. OThV5Google Scholar
  7. 7.
    Melikyan A, Alloatti L, Muslija A, Hillerkuss D, Schindler PC, Li J, Palmer R, Korn D, Muehlbrandt S, Thourhout DV, Chen B, Dinu R, Sommer M, Koos C, Kohl M, Freude W, Leuthold J (2014) High-speed plasmonic phase modulators. Nat Photonics 8:229–233CrossRefGoogle Scholar
  8. 8.
    Chen CT, Xu X, Hosseini A, Pan Z, Chen RT (2015) High efficiency silicon strip waveguide to plasmonic slot waveguide mode converter. Proc SPIE 9368:936809CrossRefGoogle Scholar
  9. 9.
    Haffner C, Heni W, Fedoryshyn Y, Niegemann J, Melikyan A, Elder DL, Baeuerle B, Salamin Y, Josten A, Koch U, Hoessbacher C, Ducry F, Juchli L, Emboras A, Hillerkuss D, Kohl M, Dalton LR, Leuthold J (2015) All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nat Photonics 9:525–528CrossRefGoogle Scholar
  10. 10.
    Sun X, Dai D, Thylén L, Wosinski L (2015) High-sensitivity liquid refractive-index sensor based on a Mach-Zehnder interferometer with a double-slot hybrid plasmonic waveguide. Opt Express 23(20):25688–25699CrossRefGoogle Scholar
  11. 11.
    Nielsen MP, Lafone L, Rakovich A, Sidiropoulos T, Rahmani M, Maier SA, Oulton RF (2016) Adiabatic nanofocusing in hybrid gap plasmon waveguides on the silicon-on-insulator platform. Nano Lett 16(2):1410–1414CrossRefGoogle Scholar
  12. 12.
    Briggs RM, Grandidier J, Burgos SP, Feigenbaum E, Atwater HA (2010) Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides. Nano Lett 10(120):4851–4857CrossRefGoogle Scholar
  13. 13.
    Papaioannou S, Vyrsokinos K, Tsilipakos O, Pitilakis A, Hassan K, Weeber J-C, Markey L, Dereux A, Bozhevolnyi SI, Miliou A, Kriezis E, Pleros N (2011) A 320 Gb/s-throughput capable 2x2 silicon-plasmonic router architecture for optical interconnects. J Lightwave Technol 29(21):3185–3195CrossRefGoogle Scholar
  14. 14.
    Tsilipakos O, Pitilakis A, Yioultsis TV, Papaioannou S, Vyrsokinos K, Kalavrouziotis D, Giannoulis G, Apostolopoulos D, Avramopoulos H, Tekin T, Baus M, Karl M, Hassan K, Weeber J-C, Markey L, Dereux A, Kumar A, Bozhevolnyi SI, Pleros N, Kriezis EE (2012) Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: theoretical analysis and experimental demonstration. IEEE J Quantum Electron 48:678–687CrossRefGoogle Scholar
  15. 15.
    Papaioannou S, Kalavrouziotis D, Vyrsokinos K, Weeber J-C, Hassan K, Markey L, Dereux A, Kumar A, Bozhevolnyi SI, Baus M, Tekin T, Apostolopoulos D, Avramopoulos H, Pleros N (2012) Active plasmonics in WDM traffic switching applications. Sci Rep 2:65CrossRefGoogle Scholar
  16. 16.
    Dabos G, Ketzaki D, Manolis A, Markey L, Weeber J-C, Dereux A, Giesecke A-L, Porschatis C, Chmielak B, Tsiokos D, Pleros N (2018) Plasmonic stripes in aqueous environment co-integrated with Si3N4 photonics. IEEE Photonics J 10(1):1–8CrossRefGoogle Scholar
  17. 17.
    Dabos G, Manolis A, Papaioannou S, Tsiokos D, Markey L, Weeber J-C, Dereux A, Giesecke A-L, Porschatis C, Chmielak B, Pleros N (2018) CMOS plasmonics in WDM data transmission: 200 Gb/s (8 x 25Gb/s) transmission over aluminum plasmonic waveguides. Opt Express 26(10):12469–12478CrossRefGoogle Scholar
  18. 18.
    Wan R, Liu F, Tang X, Huang Y, Peng J (2009) Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode. Appl Phys Lett 94(14):141104CrossRefGoogle Scholar
  19. 19.
    Liu F, Wan R, Li Y, Huang Y, Miura Y, Ohnishi D, Peng J (2009) Extremely high efficient coupling between long range surface plasmon polariton and dielectric waveguide mode. Appl Phys Lett 95(9):091104CrossRefGoogle Scholar
  20. 20.
    Fan B, Liu F, Li Y, Huang Y, Miura Y, Ohnishi D (2012) Refractive index sensor based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide. Appl Phys Lett 100(11):111108CrossRefGoogle Scholar
  21. 21.
    Zhu S, Lo G, Kwong D (2013) Silicon nitride based plasmonic components for CMOS back-end-of-line integration. Opt Express 21(20):23376–23390CrossRefGoogle Scholar
  22. 22.
    Dabos G, Ketzaki D, Manolis A, Chatzianagnostou E, Markey L, Weeber J-C, Dereux A, Giesecke A-L, Porschatis C, Chmielak B, Tsiokos D, Pleros N (2018) Water cladded plasmonic slot waveguide vertically coupled with Si3N4 photonics. IEEE Photonics J 10(3):1–8CrossRefGoogle Scholar
  23. 23.
    Maksymov IS, Kivshar YS (2013) Broadband light coupling to dielectric slot waveguides with tapered plasmonic nanoantennas. Opt Lett 38(22):4853–4856CrossRefGoogle Scholar
  24. 24.
    Baets R, Subramanian AZ, Clemmen S, Kuyken B, Bienstman P, Thomas NL, Roelkens G, Thourhout DV, Helin P, Severi S (2016) Silicon photonics: silicon nitride versus silicon-on-insulator. Optical Fiber Communication Conference:Th3J1Google Scholar
  25. 25.
    Rahim A, Ryckeboer E, Subramanian AZ, Clemmen S, Kuyken B, Dhakal A, Raza A, Hermans A, Muneeb M, Dhoore S, Li Y, Dave U, Bienstman P, Thomas NL, Roelkens G, Thourhout DV, Helin P, Severi S, Rottenberg X, Baets R (2017) Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits. J Lightwave Technol 35(4):639–649CrossRefGoogle Scholar
  26. 26.
    Sacher W, Huang Y, Lo G-Q, Poon J (2015) Multilayer silicon nitride-on-silicon integrated photonic platforms and devices. J Lightwave Technol 33(4):901–910CrossRefGoogle Scholar
  27. 27.
    Zektzer R, Desiatov B, Mazurski N, Bozhevolnyi SI, Levy U (2014) Experimental demonstration of CMOS- compatible long-range dielectric loaded surface plasmon waveguides (LR-DLSPPWs). Opt Express 22(18):22009–22017CrossRefGoogle Scholar
  28. 28.
    Kravets VG, Jalil R, Kim Y-J, Ansell D, Aznakayeva D, Thackray B, Britnell L, Belle B, Withers F, Radko I, Han Z, Bozhevolnyi S, Novoselov K, Geim A, Grigorenko A (2014) Graphene-protected copper and silver plasmonics. Sci Rep 4:5517CrossRefGoogle Scholar
  29. 29.
    Fedyanin DY, Yakubovsky DI, Kirtaev RV, Volkov VS (2016) Ultralow-loss CMOS copper plasmonic waveguides. Nano Lett 16:362–366CrossRefGoogle Scholar
  30. 30.
    Lotan O, Smith C, Bar-David J, Mortensen NA, Kristensen A, Levy U (2016) Propagation of channel plasmons at the visible regime in aluminum v-groove waveguides. ACS Photonics 3:2150–2157CrossRefGoogle Scholar
  31. 31.
    Weeber J-C, Arocas J, Heintz O, Markey L, Viarbitskaya S, Colas-Des-Francs G, Hammani K, Dereux A, Hoessbacher C, Koch U, Leuthold J, Rohracher K, Giesecke A-L, Porschatis C, Wahlbrink T, Chmielak B, Pleros N, Tsiokos D (2017) Characterization of CMOS metal based dielectric loaded surface plasmon waveguides at telecom wavelengths. Opt Express 25(1):394–408CrossRefGoogle Scholar
  32. 32.
    Berini P (2001) Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures. Phys Rev B 63:125417CrossRefGoogle Scholar
  33. 33.
    Luke K, Okawachi Y, Lamont MRE, Gaeta AL, Lipson M (2015) Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt Lett 40(21):4823–4826CrossRefGoogle Scholar
  34. 34.
    Palik ED (1998) Handbook of optical constants of solids I-III. Academic Press, OrlandoGoogle Scholar
  35. 35.
  36. 36.
  37. 37.
    Yariv A (1973) Coupled-mode theory for guided-wave optics. IEEE J Quantum Electron 9:919–933CrossRefGoogle Scholar
  38. 38.
    Huang WP (1994) Coupled-mode theory for optical waveguides: an overview. J Opt Soc Am A 11:963–983CrossRefGoogle Scholar
  39. 39.
    Agrawal GP (2007) Nonlinear Fiber optics. Academic PressGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Informatics, Center for Interdisciplinary Research and InnovationAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Laboratoire Interdisciplinaire Carnot de BourgogneDijonFrance

Personalised recommendations